Silniki chłodzone powietrzem a moc wentylatora

Dzisiejszy wpis poświęcony będzie mocy pobieranej przez wentylator w pojazdach z silnikiem chłodzonym powietrzem. Otóż zdarzało mi się spotkać z opinią według której w samochodach i czołgach z silnikiem chłodzonym powietrzem wentylator zapewniający dopływ powietrza chłodzącego pobiera więcej mocy od analogicznego wentylatora stosowanego w pojazdach z silnikiem chłodzonym cieczą. Aby sprawdzić czy ta opinia ma coś wspólnego z rzeczywistością, postanowiłem zajrzeć do mądrych książek. Pierwsza książka to Chłodzenie powietrzne silników spalinowych napisana przez Mieczysława Chwieja i Józefa Paciorskowskiego. Książka została wydana w 1961. Poniżej cytat z tej książki:

 Przy chłodzeniu wodnym ilość powietrza potrzebnego do chłodzenia jest większa, gdyż rozporządzamy mniejszym spadkiem temperatury, niż przy chłodzeniu powietrznym. Stąd moc pobierana przez wentylator silnika chłodzonego powietrzem jest mniejsza, niż zapotrzebowanie jej dla układu silników chłodzonych wodą. Jednak przy chłodzeniu powietrznym stosuje się znacznie wyższe ciśnienia i szybkości powietrza niż przy chłodzeniu wodnym i dla uniknięcia dużych strat mocy na napęd wentylatora musi on być bardzo starannie zaprojektowany i wykonany. (cytat ze strony 13)

 

Powyższy cytat wskazuje że opinia z którą miałem do czynienia nie jest zgodna z rzeczywistością. Zgodnie z powyższym cytatem jest wręcz przeciwnie, to wentylator zapewniający powietrze chłodzące w silniku chłodzonym cieczą pobiera więcej mocy. No, ale to tylko jedna książka. Zajrzyjmy więc do kolejnej mądrej książki. Tym razem książka nosi tytuł Silniki chłodzone powietrzem, a jej polska wersja została wydana w 1963 roku. Oryginalna, czechosłowacka wersja, została wydana w 1960 roku pod tytułem Vzduchem chlazené vozidlové motory. Autor to Julius Mackerle. Poniżej cytaty z tej książki:

 Również motocykle mają dziś prawie wyłącznie silniki chłodzone powietrzem; podobnie jak w samolotach ilość powietrza opływająca podczas jazdy jest wystarczająca do chłodzenia silnika, bez potrzeby stosowania specjalnego wentylatora. W niektórych tylko silnikach lotniczych, zwłaszcza na helikopterach używane są do chłodzenia dodatkowe dmuchawy. (cytat ze strony 9)

 

 Mniejsza ilość chłodzącego powietrza. Ze względu na większy spadek temperatury, każdy kilogram chłodzącego powietrza może odprowadzić większą ilość ciepła i dlatego do bezpośredniego chłodzenia cylindrów powietrzem zużyje się mniejszą ilość powietrza niż w silnikach chłodzonych wodą. Dobry silnik chłodzony powietrzem potrzebuje do chłodzenia tylko połowę tej ilości powietrza jakiej wymaga silnik chłodzony wodą o tej samej mocy. Wobec tego wymiary kanałów i otworów na powietrze mogą być małe, co jest szczególnie cenną zaletą w pojazdach pancernych. (cytat ze strony 13)

 

 Dobry silnik powinien jak najmniej zużywać mocy do chłodzenia. Moc ta zależy od wymaganej ilości i ciśnienia chłodzącego powietrza, od sprawności wentylatora i od stanu przewodów powietrza.

 Przejście ciepła z ciała stałego do powietrza zawsze wymaga pewnej mocy, która musi pozwolić przynajmniej na pokonanie oporu tarcia powierzchniowego. Moc  ta nie byłaby potrzebna jedynie wówczas, gdyby do odprowadzania ciepła do otoczenia użyto powierzchni nadwozia tak, że tarcie powierzchniowe w tym przypadku okazało by się częścią oporu powietrza nadwozia. Jednak sposób taki jest niepraktyczny i skomplikowany, i w samochodach dotychczas nie stosowany; użyto go natomiast w niektórych samolotach wyczynowych z silnikami chłodzonymi wodą, gdzie powierzchnie skrzydeł stanowią chłodnice wody.

chlodzenie_moc_1

 Minimalną moc potrzebną do chłodzenia można więc obliczyć z tarcia powierzchniowego, potrzebnego do odprowadzenia ciepła. Jeżeli na przykład trzeba chłodzić silnik o mocy 100 KM przy szybkości pojazdu 80 km/godz, to pozostałe warunki odpowiadać będą danym, wymienionym w tablicy 15. (chodzi o powyższą tablicę oznaczoną numerem 5, po prostu w numeracji tablic występuje błąd i tablica numer 15 została oznaczona cyfrą 5- przypis autora bloga)

 Jeżeli założyć, że powierzchniowy współczynnik przejście q ma przy prędkości 80 km/godz wartość 100 kcal/m²h °C, to przy różnicy temperatur 60 °C będzie potrzeba co najmniej 1,97% efektywnej mocy Ne do pokonania tarcia powierzchniowego. Przy spadku temperatury 120 °C potrzebna moc zmniejszyła by się do 0,74% Ne . Jednakże ten idealny przypadek nigdy nie występuje. (cytat ze strony 113)

 

 Przy konstruowaniu silnika należy wybrać kompromis pomiędzy rozstawem cylindrów (ciężarem silnika) i mocą użytą do chłodzenia. Moc potrzebna do chłodzenia (moc napędu wentylatora) wyraża się wzorem:

chlodzenie_moc_2

 Ze wzoru wynika, że powinno się operować małą ilością powietrza i niskim ciśnieniem. Jednakże mała ilość powietrza wymaga  wysokiego ciśnienia. W takim przypadku trzeba więc  zapobiec jakimkolwiek stratom powietrza przez stosowanie szczelnej obudowy.

 W silnikach o bardzo dużej mocy z cylindrami o dużej średnicy trzeba stosować gęsto użebrowanie o dużym współczynniku U. Konieczność wysokiego ciśnienia tłumaczy się tym, że powierzchnia przelotowa pomiędzy żebrami jest mała i chociaż jednostkowa ilość powietrza (kg/KMh) jest mała- bezwzględna ilość powietrza jest duża i dlatego ciśnienie powinno wynosić 200 do 400 mm słupa wody. W silnikach lotniczych ciśnienie dynamiczne często już nie wystarcza  musi być użyty wentylator.

 W silnikach trakcyjnych, które mają niewielkie wymiary cylindrów i stosunek powierzchni chłodzącej do objętości skokowej dość korzystny, wystarczające jest ciśnienie 100 do 150 mm słupa wody. W małych cylindrach droga przepływu między żebrami jest krótsza i wobec tego opór powietrza mniejszy. Jeżeli okaże się, że ciśnienie chłodzącego powietrza jest większe niż 200 mm słupa wody, to wskazane jest przekonstruować silnik. Dobry silnik chłodzony powietrzem nie powinien na chłodzenie zużywać więcej niż 6 do 8% Ne (Ne to moc efektywna silnika- przypis autora bloga).

chlodzenie_moc_3

 W tablicy 20 podana jest moc potrzebna do chłodzenia w niektórych silnikach. W jednocylindrowych silnikach motocyklowych jest dość miejsca na użebrowanie i wystarcza ciśnienie dynamiczne powietrza wytworzone podczas jazdy. W małych silnikach rowerowych, mających szczególnie korzystny stosunek powierzchni chłodzonej do objętości cylindra, wystarczające jest ciśnienie około 15 mm słupa wody, co odpowiada szybkości 18 km/godz. (dodam że w tablicy 20 silnik oznaczony jako V 2 w czołgu to radziecki czołgowy silnik W-2 stosowany między innymi w czołgu średnim T-34 z okresu IIwś- przypis autora bloga)

chlodzenie_moc_4

 Jeżeli przewiduje się małą moc do chłodzenia, to trzeba przyjąć również małe ciśnienie powietrza. Moc oddawana na chłodzenie rośnie z 2,75 do 2,9 potęgą szybkości przepływu powietrza. Z rysunku 76 widać, że (pomijając ciężar żeber) przy idealnych żebrach aluminiowych i przy ciśnieniu powietrza 100 mm słupa wody można osiągnąć oszczędność mocy około 60% w porównaniu z ciśnieniem 300 mm sł. wody.

 Ze względu na rozstaw cylindrów i na niemożność umieszczenia drastycznie dużych żeber na jednostce zewnętrznej powierzchni cylindra, nie można przyjąć dowolnie niskiego ciśnienia powietrza. Jeżeli zastosować cylindry nieosłonięte, to wykorzystanie powietrza jest niedostateczne (z powodu słabego ogrzania) i dlatego potrzebna będzie duża ilość powietrza, czyli również przy małym ciśnieniu zapotrzebowanie mocy będzie duże.

 Przy małym jednostkowym przechodzeniu ciepła z komory sprężania i przy gęstym żebrowaniu, wystarczy do chłodzenia bardzo mała ilość powietrza. Na rysunku 91 podane są wyniki pomiarów przeprowadzonych przez Löhnera na silniku z doładowaniem, chłodzonym powietrzem. Wyniki te wskazują że przy dużych mocach jednostkowych można ochłodzić cylinder przy ciśnieniu 150 mm słupa wody, zużywając 14 kg/KMh powietrza, co odpowiada mocy chłodzenia rzędu 1% Ne .

chlodzenie_moc_5

 Moc potrzebna do chłodzenia w dużej mierze zależy też od tego, jaka jest dopuszczalna temperatura cylindra. Do obniżenia temperatury z 200 °C do 180 °C (10%), wzrośnie moc potrzebna do chłodzenia 1,5-krotnie. W zakresie wysokich temperatur przyrost ten jest większy niż w niższych temperaturach. Stosując użebrowanie z materiału o dobrej przewodności cieplnej można wydatnie zmniejszyć moc zużywaną do chłodzenia. W tym kierunku dokonane zostały daleko idące badania na cylindrze silnika lotniczego Ranger. Ponieważ w tym przypadku chodzi o silnik rzędowy o małej średnicy cylindra, więc wyniki tych badań mogą być interesujące i dla konstruktora samochodu. (cytaty pochodzą ze stron 137, 138, 139 i 140)

chlodzenie_moc_6

 

Powyższe cytaty to kolejna wskazówka na to że przynajmniej w latach 60. uważano że wentylator zapewniający dopływ powietrza chłodzącego do silnika chłodzonego cieczą pobiera więcej mocy od wentylatora zapewniającego dopływ powietrza chłodzącego do silnika chłodzonego powietrzem. Na koniec zaznaczę że to ile mocy wentylator pobiera przeciętnie podczas jazdy zależne jest między innymi od tego jak długo wentylator pracuje. Przykładowo, przy silniku chłodzonym cieczą, wentylator zapewniający dopływ powietrza chłodzącego nie musi pracować zbyt często, zakładając że dany pojazd ma system napędu wentylatora skonstruowany tak, aby wentylator pracował jedynie wtedy kiedy musi, a nie cały czas. Poniżej cytat z książki Chłodzenie cieczą silników pojazdów mechanicznych. Książka pochodzi z 1961 roku i została napisana przez Zbigniewa Szleszyńskiego:

 Włączanie wentylatora tylko w określonych okresach czasu  pozwala na znaczną oszczędność mocy traconej na napęd wentylatora. Jak wykazały próby, w ustalonych warunkach eksploatacji silnika wykresy pracy wentylatora stanowią tylko 5… 8% okresów pracy silnika.

 Wpływ temperatury otoczenia a okresy włączenia wentylatora silnika w nieustalonych warunkach eksploatacji przedstawiono na rysunku 5.10

chlodzenie_moc_7

 Zaoszczędzona moc silnika pozwala na zwiększenie zrywności pojazdu, podwyższenie prędkości maksymalnej lub na napęd dodatkowych urządzeń pomocniczych.

Jeżeli warunki eksploatacji się nie zmieniają, oszczędności na mocy traconej na napęd wentylatora zmniejszają zużycie paliwa o 3… 10%. (cytat ze strony 100)

 

Być może to że obecnie pojazdy wyposażone w silniki chłodzone cieczą znacznie częściej mają układ napędu wentylatora opracowany tak, aby wentylator pracował jedynie wtedy kiedy jest to potrzebne, a nie cały czas, względem tego jak często taki układ napędu wentylatora stosowano w silnikach chłodzonych cieczą z lat 60., zmieniło postrzeganie tego jak dużo mocy potrzebuje wentylator w silniku chłodzonym cieczą, a jak dużo w silniku chłodzonym powietrzem. A być może nie, być może i dzisiaj, przy współczesnych systemach sterowania pracą wentylatora, to wentylator w silniku chłodzonym cieczą pobiera więcej mocy niż w silniku chłodzonym powietrzem, tym bardziej że nowoczesne systemy sterowania pracą wentylatora można zastosować również w silniku chłodzonym powietrzem.

Reklamy
Silniki chłodzone powietrzem a moc wentylatora

Skomentuj

Wprowadź swoje dane lub kliknij jedną z tych ikon, aby się zalogować:

Logo WordPress.com

Komentujesz korzystając z konta WordPress.com. Wyloguj /  Zmień )

Zdjęcie na Google+

Komentujesz korzystając z konta Google+. Wyloguj /  Zmień )

Zdjęcie z Twittera

Komentujesz korzystając z konta Twitter. Wyloguj /  Zmień )

Zdjęcie na Facebooku

Komentujesz korzystając z konta Facebook. Wyloguj /  Zmień )

w

Connecting to %s