Hamulce wylotowe

Dziś wpis o hamulcach wylotowych. Czym jest urządzenie zwane hamulcem wylotowym? Otóż jest to zamontowane na końcu lufy urządzenie wylotowe, mające za zadanie zmniejszyć odrzut broni, poprzez wykorzystanie powstałych podczas strzału gazów prochowych. Hamulce wylotowe stosowane są zarówno w przypadku broni strzeleckiej, jak i w broni artyleryjskiej. Hamulce wylotowe dzielą się na akcyjne (zwane też aktywnymi), reakcyjne (reaktywne) i akcyjno-reakcyjne (aktywno-reaktywne). Poniżej opisuję poszczególne typu hamulców wylotowych:

 

 

hamulec_aktywny_z

Akcyjny (aktywny) hamulec wylotowy.

W przypadku akcyjnego hamulca wylotowego, część gazów prochowych uderza w ścianki hamulca ustawione prostopadle do lufy. Gdyby odrzut broni nie istniał, uderzenie gazów prochowych w ścianki hamulca ustawione prostopadle do lufy, powodowało by ruch broni do przodu. Ale odrzut broni istnieje, tym samym wspomniane uderzenie jedynie zmniejsza odrzut. Na powyższym rysunku czerwonymi strzałkami zaznaczono gazy prochowe uderzające w ścianki hamulca prostopadłe do lufy (ów ścianki również zaznaczono kolorem czerwonym).

 

 

hamulec_reaktywny_z

Reakcyjny (reaktywny) hamulec wylotowy.

W przypadku reakcyjnego hamulca wylotowego, część gazów prochowych zostaje skierowanych przez hamulec do tyłu. Przy braku odrzutu, ruch gazów do tyłu, powodował by ruch broni do przodu. Jednak odrzut istnieje, tym samym skierowanie części gazów prochowych do tyłu jedynie zmniejsza odrzut. Na powyższym rysunku niebieskimi strzałkami zaznaczono gazy prochowe skierowane do tyłu przez reakcyjny hamulec wylotowy.

 

 

hamulec_aktywno_reaktywny_z

Akcyjno-reakcyjny (aktywno-reaktywny) hamulec wylotowy.

Akcyjno-reakcyjny hamulec wylotowy to skrzyżowanie hamulca akcyjnego z reakcyjnym. W przypadku akcyjno-reakcyjnego hamulca wylotowego, za zmniejszenie odrzutu częściowo odpowiada uderzenie gazów prochowych w ścianki hamulca prostopadłe do lufy, a częściowo skierowanie gazów prochowych do tyłu. Na powyższym rysunku czerwone strzałki to gazy prochowe uderzające w ścianki hamulca ustawione prostopadle do lufy (również zaznaczone kolorem czerwonym). Strzałki niebieskie to gazy prochowe skierowane do tyłu.

 

Zgodnie z pracą Teoria strzału (Wydawnictwo MON, rok wydania: 1970) hamulce wylotowe pochłaniają około 30-40% energii odrzutu. Natomiast zgodnie z książką Broń i amunicja strzelecka LWP (autor: Stanisław Torecki, Wydawnictwo MON, rok wydania: 1985) istniejące hamulce wylotowe mogą zmniejszać energię odrzutu swobodnego nawet o 60%. Hamulce wylotowe mają jednak pewne wady. Zgodnie z Teorią strzału wady hamulców wylotowych to:

-demaskowanie broni;

-kierowanie strumienia gazów na strzelającego;

-powodowanie wznoszenia pyłu przez gazy prochowe utrudniającego prowadzenie celnego ognia.

Przy czym ów pył wznoszony przez gazy prochowe to po prostu pył porywany z podłoża podczas strzału w wyniku działania gazów prochowych.

Dodatkowo, zgodnie z książką Broń i amunicja strzelecka LWP, wadą hamulców wylotowych są ich duże wymiary.

 

Reklamy
Hamulce wylotowe

Jak działa strumień kumulacyjny?

Kumulacja_m2

Rysunek dotyczący zjawiska kumulacji. Rysunek pochodzi z książki „Współczesna broń strzelecka” (autor: Michał Kochański, Wydawnictwo MON, rok wydania: 1963).

 

Jak pewnie wielu czytelnikom tego bloga wiadomo, jeden z typów amunicji przeciwpancernej to amunicja kumulacyjna. W amunicji tego typu za przebicie pancerza odpowiada strumień kumulacyjny. To znaczy, pocisk uderza w pancerz, w wyniku działania zapalnika następuje wybuch materiału wybuchowego umieszczonego we wnętrzu pocisku, a w wyniku owego wybuchu metalowa wkładka kumulacyjna zmienia się w strumień kumulacyjny, który przebija pancerz. Aby uzyskać najlepszą przebijalność, wkładka kumulacyjna powinna znajdować się w odpowiedniej odległości od pancerza w chwili wybuchu materiału wybuchowego umieszczonego we wnętrzu pocisku. Odległość pomiędzy wkładką kumulacyjną a pancerzem w chwili wybuchu materiału wybuchowego to ogniskowa. Tutaj dodam że zjawisko kumulacji może wystąpić w przypadku odpowiednio ukształtowanego materiału wybuchowego pozbawionego metalowej wkładki kumulacyjnej, ale wszystkie znane mi kumulacyjne pociski przeciwpancerne metalową wkładkę mają.

Lecz na jakiej zasadzie strumień kumulacyjny przebija pancerz? Wielokrotnie spotykałem się z opiniami według których strumień kumulacyjny przepala pancerz. Jednak znane mi informacje wskazują że nie jest to prawda. Według posiadanych przeze mnie informacji strumień kumulacyjny przebija pancerz dzięki swojej energii kinetycznej, a duża energia kinetyczna strumienia kumulacyjnego bierze się z bardzo dużej prędkości strumienia. Strumień kumulacyjny ma bardzo dużą prędkość, a tym samym dużą energię, w wyniku wybuchu materiału wybuchowego odpowiedzialnego za uformowanie się strumienia. Prędkość strumienia kumulacyjnego jest tak duża, że prędkość pocisku w chwili uderzenia w cel, nie ma istotnego wpływu na prędkość strumienia. Stąd też jedną z zalet amunicji kumulacyjnej jest to że jej przebijalność nie zależy w istotnym stopniu od prędkości pocisku. Poniżej cytat z książki Broń przeciwpancerna piechoty (autor: Leon Chodkiewicz, Wydawnictwo MON, rok wydania: 1959):

 

Zdolność przebicia pocisku kumulacyjnego zależy głównie od energii kinetycznej strumienia. Energię kinetyczną strumienia uzyskuje się przez detonację materiału kruszącego zawartego w ładunku kumulacyjnym…

…Prędkość postępowa pocisku w chwili uderzenia w pancerz, a więc prędkość unoszenia układu kumulacynego jest tak mała w porównaniu z prędkością strumienia, że jej wpływ na energię kinetyczną strumienia, jak i na zdolność przebicia pozbawiony jest praktycznego zdarzenia.

Jak działa strumień kumulacyjny?

Derywacja pocisku

zboczenie_pocisku_1m

Powyżej rysunek przedstawiający zboczenie pocisku (derywacja pocisku) spowodowane gwintowaniem lufy. Rysunek pochodzi z instrukcji „Teoria Strzału” (wydawnictwo MON, 1970 rok).

 

Dziś wpis o balistyce, a konkretnie o derywacji pocisku (zboczenie pocisku) występującym podczas strzelania z broni o lufie gwintowanej. Otóż podczas strzelania z broni o prawoskrętnym gwincie lufy, pocisk będzie podczas lotu zbaczał w prawo, natomiast podczas strzelania z broni o lewoskrętnym gwincie lufy, pocisk podczas lotu będzie zbaczał w lewo. Poniżej cytat z pracy zatytułowanej Instrukcja strzelania piechoty, część IV, teoria strzału (wydawnictwo MON, 1951 rok):

Wskutek jednoczesnego działania na pocisk ruchu obrotowego, nadającemu pociskowi trwałe położenie podczas lotu, i oporu powietrza, dążącego do obrócenia pocisku przednią częścią do tyłu, oś pocisku odchyla się od kierunku lotu w stronę obracania się, w rezultacie czego pocisk napotyka na opór powietrza więcej jedną swą stroną i dlatego odchyla się od płaszczyzny strzału w kierunku obracania się. Takie odchylenie obracającego się pocisku w bok od płaszczyzny strzału nazywa się z b o c z e n i e m.

Zboczenie wzrasta nieproporcjonalnie do odległości toru lotu pocisku, wskutek czego tor obracającego się pocisku widziany z góry przedstawia linię krzywą.

W broni o bruzdach prawoskrętnych zboczenie zawsze następuje w prawo od płaszczyzny strzału.

Podczas strzelania pionowego (przy kącie rzutu 90°), wskutek braku przyczyn przewracania pocisku w czasie pokonywana oporu powietrza, zboczenie nie istnieje.

 

Czy jednak zboczenie pocisku spowodowane gwintowaną lufą ma istotny wpływ na celność? Aby na to pytanie odpowiedzieć, postanowiłem zajrzeć do pracy zatytułowanej Podręcznik strzelca wyborowego (rok wydania: 1972). Poniżej cytat z ów podręcznika:

W praktyce strzeleckiej zboczenie pocisku na bliższych odległościach (do 600 m) nie ma praktycznego wpływu na trafienie celu. Natomiast podczas strzelania na odległość wynoszącą około 1000 m należy koniecznie uwzględnić poprawkę na zboczenie, które na przykład dla karabinu wyborowego (chodzi o radziecki karabin SWD na nabój 7,62x54R mm- przypis autora bloga) w odległości 1200 m wynosi 45 cm.

 

Poniżej natomiast tabela z pracy zatytułowanej Krótkie wiadomości z teorii strzelania (Wojskowy Instytut Naukowo – Wydawniczy, 1945 rok):

zboczenie_wartosc_m

Powyższa tabela zawiera wartości derywacji dla broni strzelającej nabojem 7,62x54R mm z pociskiem lekkim wzór 1908 (taką bronią był między innymi karabin Mosina). Znane mi wzory broni na nabój 7,62x54R mm mają lufę o gwincie prawoskrętnym.

 

Przy czym pisząc o derywacji pocisku, poruszę również zagadnienie wpływu siły Coriolisa na celność broni strzeleckiej (choć już zamieściłem na ten temat oddzielny wpis). Otóż czytając internetowe dyskusje dotyczące celności broni strzeleckiej, doszedłem do wniosku że dyskutanci często poruszają zagadnienie wpływu siły Coriolisa na celność broni, a rzadko temat derywacji pocisku. Jednocześnie znane mi dane wskazują że derywacja pocisku ma zdecydowanie większy wpływ na położenie średniego punktu trafienia niż siła Coriolisa. Przykładowo, zgodnie z książką Celność broni strzeleckiej (autor: Jerzy Ejsmont), podczas strzelania w Europie Środkowej, maksymalny wpływ siły Coriolisa na położenie średniego punktu trafienia będzie wynosić 7 centymetrów, zakładając że strzelamy na 1000 metrów z broni na nabój .308 Winchester. Dla porównania, zgodnie z tą samą książką, wpływ derywacji pocisku na położenie średniego punktu trafienia będzie wynosić 19 centymetrów, zakładając że strzelamy na 800 metrów z broni na nabój .308 Winchester, używając pocisków o masie 185 granów.

Warto zauważyć coś jeszcze. Otóż na półkuli północnej siła Coriolisa, w zależności od kierunku strzelania, powoduje odchylenie toru lotu pocisków w prawo, w dół, lub w górę. Jednocześnie na półkuli północnej siła Coriolisa nie powoduje odchylenia toru lotu pocisków w lewo. Tym samym wydawać by się mogło że jeśli jakaś armia przewiduje walkę głównie na półkuli północnej, to powinna używać broni z lufą o gwincie lewoskrętnym. W końcu jeśli siła Coriolisa będzie odchylać tor lotu pocisków w prawo, a derywacja w lewo (lewoskrętny gwint lufy), to wtedy oba czynniki będą się częściowo znosić. To znaczy, przyjmijmy że jesteśmy na półkuli północnej i strzelamy w kierunku północnym bądź południowym z broni o lewoskrętnym gwincie lufy. W takiej sytuacji siła Coriolisa będzie odchylać tor lotu pocisków w prawo, a derywacja w lewo. Wpływ derywacji będzie większy, więc tor lotu pocisków będzie mimo wszystko odchylony w lewo, ale ów odchylenie będzie zmniejszone o wpływ siły Coriolisa. Tyle teoria. W praktyce broń o prawoskrętnym gwincie lufy była powszechnie używana również przez armie które walczyły głównie na półkuli północnej. Przykładem armii walczącej głównie (bądź jedynie) na półkuli północnej, a używającej broni z prawoskrętnym gwintem lufy, jest między innymi Wojsko Polskie.

Dodam że jeśli jesteśmy na półkuli północnej i strzelamy w kierunku północnym bądź południowym z broni o prawoskrętnym gwincie lufy, to wtedy wpływ siły Coriolisa i derywacji będzie się nakładać. To znaczy, w takiej sytuacji tor lotu pocisków będzie odchylony w prawo, przy czym za ów odchylenie odpowiadać będzie zarówno derywacja (głównie), jak i dodatkowo siła Coriolisa (w mniejszym stopniu). Bądź ujmując to inaczej, odchylenie toru lotu pocisków w prawo spowodowane derywacją będzie dodatkowo zwiększone o oddziaływanie siły Coriolisa. Ogólnie rzecz biorąc, według mnie powszechne występowanie broni o prawoskrętnym gwincie lufy w armiach walczących głównie na półkuli północnej dowodzi że wpływ siły Coriolisa na położenie średniego punktu trafienia nie jest przesadnie istotny.

 

Na zakończenie, kilka rysunków z pracy zatytułowanej Podręcznik balistyki (autor: Stanisław Rajewski, rok wydania: 1947). Zamieszczone poniżej rysunki dotyczą derywacji pocisku:

zboczenie_pocisku_2m

 

zboczenie_pocisku_3m

 

zboczenie_pocisku_4m

 

zboczenie_pocisku_5m

 

zboczenie_pocisku_7m

 

Derywacja pocisku

Rakietowa ciekawostka

Dzisiejszy wpis dotyczyć będzie pewnej ciekawostki związanej z wpływem wiatru bocznego na tor lotu pocisku rakietowego. Wpis zacznę jednak od tego jak wiatr boczny wpływa na tor lotu pocisków bez własnego napędu (typowe pociski wystrzeliwane choćby z armat i karabinów). Otóż w przypadku pocisków bez własnego napędu, zarówno w przypadku pocisków stabilizowanych obrotowo (mających punkt parcia przed środkiem ciężkości), jak i w przypadku pocisków stabilizowanych brzechwowo (mających punkt parcia za środkiem ciężkości), wiatr boczny powoduje zbaczanie pocisku w tą stronę w którą wieje wiatr. Przykładowo, jeśli strzelamy z karabinu i mamy wiatr boczny wiejący z lewej strony w kierunku prawej, to pocisk będzie zbaczał w prawo. Poniższy rysunek przedstawia właśnie taką sytuację:

pocisk_kb_wiatr_m

Inaczej sprawa ma się jednak w przypadku pocisków rakietowych, a przynajmniej w przypadku pocisków rakietowych stabilizowanych brzechwowo. W pociskach stabilizowanych brzechwowo, dzięki umieszczonym w tylnej części pocisku brzechwom, punkt parcia znajduje się za środkiem ciężkości. Jednocześnie, z powodu brzechw, pocisk stabilizowany brzechwowo ma większą powierzchnię boczną za środkiem ciężkości, względem tego jakie wymiary ma jego powierzchnia boczna przed środkiem ciężkości. Tym samym wiatr boczny silniej wpływa na tor lotu tylnej części pocisku stabilizowanego brzechwowo (część znajdująca się za środkiem ciężkości pocisku), względem tego jak mocno wpływa na tor lotu przedniej części pocisku stabilizowanego brzechwowo (część znajdująca się przed środkiem ciężkości pocisku). Reasumując, wiatr boczny powoduje że pocisk stabilizowany brzechwowo ustawia się nieco pod wiatr, a jeśli pocisk stabilizowany brzechwowo ma własny działający napęd (zazwyczaj silnik rakietowy), to wtedy pocisk taki będzie zbaczał w przeciwną stronę względem tej w którą wieje wiatr. Przykładowo, jeśli wiatr boczny wieje z lewej strony w kierunku prawej, to pocisk stabilizowany brzechwowo, zakładając że jego silnik pracuje, będzie zbaczał w lewo (niejako pod wiatr). Jednak jeśli silnik przestanie pracować (dajmy na to, skończy się paliwo) to wtedy pocisk stabilizowany brzechwowo zacznie zbaczać zgodnie z kierunkiem wiatru (przy wietrze bocznym wiejącym z lewej strony w kierunku prawej, pocisk będzie zbaczał w prawo). Poniżej rysunek i cytat z książki Uzbrojenie wozów bojowych. Autor książki to Zygmunt Pankowski, książka została wydana w 1987 roku.

rakieta_wiatr

Pociski artyleryjskie, zarówno stabilizowane obrotowo jak i z brzechwami, odchylają się w kierunku zgodnym z kierunkiem działania wiatru. Inaczej przedstawia się sytuacja w przypadku pocisków rakietowych lub pocisków artyleryjskich z dodatkowym napędem rakietowym, często stosowanych w armatach przeznaczonych dla czołgów lekkich, wozów rozpoznawczych i bojowych wozów piechoty.

Aby pocisk ubrzechwiony stabilizował się na torze lotu, powierzchnia boczna tylnej części pocisku (za środkiem ciężkości) musi być większa od powierzchni bocznej części przedniej. W związku z tym, w wyniku działania siły parcia wiatru bocznego, wytwarza się moment siły obracający pocisk „pod wiatr”. Pracujący silnik rakietowy powoduje zatem przemieszczenie się pocisku w tym samym kierunku. Natomiast w drugim okresie lotu, gdy silnik już nie pracuje, pocisk zbacza w kierunku zgodnym z kierunkiem wiatru. Na rys. 6.2 przedstawiono poziomy rzut toru lotu pocisku z napędem rakietowym w warunkach działania wiatru bocznego. Jak z tego wynika, celne strzelanie przy użyciu tego typu pocisków wymaga precyzyjnego określania odległości strzelana i prędkości wiatru (a ściślej jego składowanej poprzecznej).

Rakietowa ciekawostka

Kąt położenia celu a tor lotu pocisku

kat_celu_tor_lotu

Rysunek z wydanej w 1947 roku polskiej książki „Podręcznik balistyki”. Książka ta została napisana przez majora Stanisława Rajewskiego. Oryginalny podpis pod rysunkiem głosi „Zwiększenie płaskości toru lotu pocisku z kb. wz. 1890/30 przy strzelaniu na 850 m w miarę zwiększania się kąta położenia celu”.

 

Jednym z kluczowych parametrów broni i amunicji podczas strzelania ogniem bezpośrednim (widoczność celu ze stanowiska ogniowego) jest płaskość toru lotu pocisku. Im tor lotu pocisku jest bardziej płaski, tym ewentualny błąd w ocenie odległości położenia celu ma mniejszy negatywny wpływ na szanse trafienia celu. Płaskość toru lotu pocisku ma szczególnie duże znaczenie jeśli dany środek ogniowy nie jest wyposażony w dalmierz, bowiem brak dalmierza sprzyja pomyłkom w ocenie odległości do celu. Zagadnienie które wiąże się bezpośrednio z płaskością toru lotu pocisku to odległość strzału bezwzględnego. Im bardziej płaski tor lotu pocisku, tym większa odległość strzału bezwzględnego. Płaskość toru lotu pocisku zależy od wielu czynników, jednym z tych czynników jest kąt położenia celu względem strzelającego. Jeśli kąt położenia celu jest zerowy (cel znajdujący się na tej samej wysokości co strzelający), wtedy tor lotu pocisku jest najbardziej stromy. Im kąt położenia celu jest bardziej odległy od zera, tym tor lotu pocisku jest bardziej płaski. Jeśli kąt położenia celu względem strzelającego wynosi +90 stopni (cel znajdujący się idealnie nad strzelającym), bądź –90 stopni (cel znajdujący się idealnie pod strzelającym), wtedy tor lotu pocisku jest teoretycznie idealnie płaski. Zgodnie z wydanym w 1947 roku polskim Podręcznikiem balistyki, przy kącie położenia celu wynoszącym od –15 stopni do +15 stopni, zmiana trajektorii lotu pocisku spowodowana niezerowym kątem położenia celu jest tak mała, że w praktyce można ją pominąć (można celować tak jak gdyby cel był na tej samej wysokości co strzelający).

Kąt położenia celu a tor lotu pocisku

Skręcenie broni

skrecenie_broni

Na powyższej grafice rysunek numer 1 obrazuje broń skręconą w lewo, rysunek numer 2 obrazuje broń nie skręconą, natomiast rysunek numer 3 obrazuje broń skręconą w prawo. W okularze lunety widać zielone podłoże tworzące linię widnokręgu, rysunek powstał z założeniem że linia widnokręgu jest idealnie pozioma (horyzont prawdziwy). Czerwona kropka w okularze lunety obrazuje średni punkt trafienia. Jak widać na rysunku, skręcenie broni w lewo powoduje duże przesunięcie średniego punktu trafienia w lewo (uchyb poziomy) oraz nieznacznie przesunięcie średniego punktu trafienia w dół (uchyb pionowy). Natomiast skręcenie broni w prawo powoduje duże przesunięcie średniego punktu trafienia w prawo (uchyb poziomy) oraz nieznacznie przesunięcie średniego punktu trafienia w dół (uchyb pionowy).

 

 

Podczas strzelania z broni strzeleckiej należy dążyć do tego aby broń nie miała przechyłu bocznego (skręcenia) w lewo bądź w prawo. Jeśli podczas strzału broń będzie skręcona w lewo, to średni punkt trafienia powędruje w lewo (uchyb poziomy) oraz w dół (uchyb pionowy) względem punktu celowania. Jeśli podczas strzału broń bęzie skręcona w prawo, to średni punkt trafienia powędruje w prawo (uchyb poziomy) oraz w dół (uchyb pionowy) względem punktu celowania. Skręcenie broni powoduje znacznie większy uchyb poziomy niż pionowy. Przykładowo zgodnie z napisaną przez Jerzego Ejsmonda książką Balistyka dla snajperów, podczas strzelania na odległość 800 metrów z broni na nabój .308 Winchester (pocisk Lapua Scenar o masie 185 granów, prędkośc początkowa 750 metrów na sekundę), skręcenie broni w prawo (zgodnie z ruchem wskazówek zegara) o 10 stopni powoduje że średni punkt trafienia zostaje przesunięty w prawo o około 21 centymetrów oraz w dół o 2 centymetry. Jednym z czynników powodujących skręcenie broni jest tendencja strzelców do poziomowania broni względem elementów otoczenia, które niekoniecznie muszą być poziome. Przykładowo jeśli strzelec poziomuje broń względem linii widnokręgu, która związana jest z horyzontem topograficznym, to linia widnokręgu może być wyznaczana przez (przykładowo) pochyłe wzgórze. Jeśli strzelec będzie poziomował broń względem pochyłego wzgórza, może dojść do skręcenia broni. Aby nie dochodziło do skręcenia broni, niektóre celowniki optyczne wyposażone są w poziomicę, która umożliwia ustawienie broni poziomo niezależnie od punktów odniesienia. Występują również przeznaczone do broni poziomice nie stanowiące elementu celownika, lecz będące oddzielnym elementem mocowanym na szynie montażowej broni.

 

 

Przechył boczny wozu bojowego

czolg_przechyl

Powyższa grafika pochodzi z wydanej w 1974 roku polskiej instrukcji „Podręcznik czołgisty”. Widoczny w górnej części grafiki napis brzmiący „5. Na przechylenie boczne czołgu podczas strzelania w terenie pofałdowanym” odnosi się do tytułu podrozdziału (tytuł podrozdziału brzmi „Określenie poprawek celowania”). Zgodnie z grafiką, aby skompensować wpływ przechyłu bocznego własnego czołgu na położenie średniego punktu trafienia, należy celować w lewy górny róg celu przy przechyle własnego czołgu w prawo oraz celować w prawy górny róg celu przy przechyle własnego czołgu w lewo. Dwie sylwetki czołgu znajdujące się na dole grafiki przedstawiają własny czołg stojący tyłem do osoby oglądającej rysunek, choć pierwsze wrażenie może sugerować inną sytuację (sylwetki czołgu mają namalowaną na środku kropkę, która może kojarzyć się z wylotem lufy armaty czołgowej, co z kolei może kojarzyć się z sytuacją w której namalowany czołg stoi przodem do osoby oglądającej rysunek).

 

 

Skręcenie boczne broni może występować nie tylko w przypadku broni strzeleckiej, ale również w przypadku broni artyleryjskiej, między innymi takiej która stanowi uzbrojenie główne wozów bojowych. Przy czym o ile strzelec znajdujący się na nierównym podłożu zazwyczaj może ustawić broń poziomo, likwidując skręcenie broni, to likwidacja skręcenia broni zazwyczaj nie jest możliwa w przypadku czołgu bądź innego wozu bojowego stojącego na pochyłym wzgórzu w sposób powodujący przechył boczny pojazdu. Stąd też powyżej zamieściłem fragment wydanej w 1974 roku polskiej instrukcji zatytułowanej Podręcznik czołgisty, która zawiera informacje jak należy celować aby skompensować wpływ przechyłu bocznego własnego czołgu (a tym samym skręcenia jego uzbrojenia głównego) na położenie średniego punktu trafienia względem punktu celowania. Wydany w 1974 roku Podręcznik czołgisty dotyczy w dużej mierze radzieckiego zimnowojennego czołgu średniego T-54/T-55, tym samym pojazdu bez systemu kierowania ogniem. Współczesne czołgi wyposażone są natomiast w zaawansowane systemy kierowania ogniem, znacznie ułatwiające celne strzelanie przy przechyle bocznym własnego wozu. Zaznaczę również że istnieją względnie nieliczne pojazdy pancerne z zawieszeniem umożliwiającym obniżenie jednego boku pojazdu przy jednoczesnym podniesieniu drugiego boku pojazdu (przykładowo francuski samochód pancerny AMX-10RC wyposażony w zawieszenie hydropneumatyczne), co przynajmniej w teorii powinno umożliwiać likwidację skręcenia broni przy wozie stojącym na pochyłym wzgórzu.

Skręcenie broni

Armata ćwierćautomatyczna

Dzisiejszy wpis to pewna anegdota dotycząca artylerii i związanej z nią terminologii. Otóż radzieckie przeciwpancerne armaty holowane i czołgowe kalibru 45 mm, strzelające amunicją 45×386 SR mm, były bronią półautomatyczną. To znaczy, przed oddaniem strzału należało ręcznie włożyć nabój do komory nabojowej, natomiast po oddaniu strzału następowało automatyczne wyrzucenie łuski. Tyle teoria. W praktyce automatyczne wyrzucenie łuski występowało podczas strzelania amunicją przeciwpancerną, jednak nie występowało podczas strzelania amunicją odłamkowo burzącą. Tym samym po wystrzeleniu pocisku odłamkowo burzącego, należało ręcznie usunąć łuskę z komory nabojowej, tak jak w przypadku niewypału (nie mylić z niewybuchem). W związku z tym że półautomatyka wspomnianych radzieckich armat działała poprawnie podczas strzelania amunicją przeciwpancerną, a jednocześnie nie działała poprawnie podczas strzelania amunicją odłamkowo burzącą, spotykany na wielu internetowych forach dyskusyjnych znany i lubiany użytkownik Speedy ukuł żartobliwy termin zgodnie z którym wspomniana broń była bronią ćwierćautomatyczną. Właśnie zbliżamy się do clou anegdoty. Otóż po jakimś czasie okazało się że termin armata ćwierćautomatyczna istniał w ZSRR na długo przed tym jak ukuł go Speedy, jednocześnie termin ten stosowany był przez Sowietów właśnie w odniesieniu do przeciwpancernych i czołgowych armat kalibru 45 mm, strzelających amunicją 45×386 SR mm. Sowieci stosowali termin armata ćwierćautomatyczna w związku z tym że półautomatyka armat strzelających amunicją 45×386 SR mm nie działała poprawnie podczas strzelania amunicją odłamkowo burzącą. Można więc powiedzieć że Speedy dokonał powtórnego wynalezienia terminu ćwierćautomat. Dodatkowo Speedy wynalazł termin ćwierćautomat niezależnie do Sowietów, którzy byli pierwotnymi twórcami tego pojęcia. Więcej na ten temat można znaleźć na forum DWS, konkretnie tutaj oraz tutaj.

Armata ćwierćautomatyczna