Porządne książki o czołgach

Dziś wpis o broni pancernej, a konkretnie o tym jakie książki o czołgach polecam. Dzisiejszy wpis pod względem koncepcji przypomina mój wpis o literaturze tyczącej się broni strzeleckiej (link). Dodam że książki które wymieniam w dzisiejszym wpisie, tyczą się nie tyle konkretnych modeli czołgów, co raczej rozwiązań konstrukcyjnych w czołgach stosowanych. Tak więc przyjrzyjmy się polecanym przeze mnie książkom- zacznijmy od książek napisanych w języku polskim:

 

Pozycja pierwsza- książka zatytułowana… Czołg. Jest to wydana w języku polskim książka radziecka, której tytuł oryginalny brzmi Tank (Танк). Polska wersja książki wydana została w 1957 roku przez Wydawnictwo MON, natomiast wersja radziecka pochodzi z 1954 roku. Autorzy książki to A. Antonow, B. Artamanow, B. Korobkow i E. Magidowicz. W mojej ocenie książka ta jest po prostu świetna- nie dość że umożliwia dogłębne poznanie konstrukcji czołgu, to jeszcze została napisana przystępnym językiem. Gdybym miał wskazać najlepszą książkę o budowie czołgów, jaką czytałem w języku polskim, wskazał bym właśnie książkę Czołg.

Pozycja druga- Uzbrojenie wozów bojowych. Książka ta została wydana przez Wydawnictwo MON w 1987 roku. Autor książki to Zygmunt Pankowski. Jak wskazuje tytuł, jest to książka o uzbrojeniu wozów bojowych. Książka została napisana przystępnym językiem.

Pozycja trzecia- Budowa pojazdów gąsienicowych. Jest to skrypt akademicki napisany przez Tadeusza Koszyckiego i Józefa Wysockiego. Skrypt wydany został w 1989 roku przez Wojskową Akademią Techniczną. Choć Budowa pojazdów gąsienicowych ma formułę skryptu akademickiego, jest to mimo wszystko praca dość przystępnie napisana.

Pozycja czwarta- Konstrukcja pojazdów gąsienicowych. Układy przeniesienia mocy. Oto kolejny skrypt akademicki z Wojskowej Akademii Technicznej, tym razem tyczący się jedynie układów przeniesienia mocy stosowanych w pojazdach gąsienicowych. Skrypt wydany został w 1975 roku. Autorzy skryptu to Tadeusz Koszycki, Eugeniusz Kraszewski, Józef Czerwonka i Kazimierz Malicki. Mam wrażenie że skrypt ten jest mniej przystępny dla przeciętnego hobbysty bądź pasjonata względem skryptu Budowa pojazdów gąsienicowych.

Pozycja piąta- Konstrukcja i obliczanie szybkobieżnych pojazdów gąsienicowych. Autor książki to Antoni Wiktor Chodkiewicz. Książka została wydana w 1990 roku przez Wydawnictwo Komunikacji i Łączności. Jest to książka wartościowa, lecz napisana mało przystępnym językiem.

Pozycja szósta- Teoria ruchu pojazdu gąsienicowego. Autor: Zbigniew Brudziński. Wydawnictwo Komunikacji i Łączności. Rok wydania: 1972. Kolejna wartościowa, lecz mało przystępna książka.

Pozycja siódma- Czołgi. Podręcznik mechanika-kierowcy III-ej klasy. Praca z 1945 roku, wydana przez Państwowy Instytut Naukowo-Wydawniczy. Autorzy pracy to J. Faszyński, K. Węcławski oraz F. Bilicki. Bardzo dobra, przystępna pozycja, tycząca się układu napędowego radzieckiego czołgu średniego T-34 oraz radzieckiego czołgu ciężkiego IS-2.

 

Powyżej wymienione zostały książki napisane w języku polskim. Teraz czas na książki napisane w języku angielskim:

Technology of Tanks. Jest to książka z 1991 roku, napisana przez Richarda M. Ogorkiewicza. Jeśli dla kogoś nazwisko autora brzmi swojsko, ma rację- autor przed wyjazdem do Wielkiej Brytanii znany był jako Ryszard Marian Ogórkiewicz. Innymi słowy, autor urodził się w Polsce. Jeśli idzie o książkę, uważam że jest ona zbliżona do radzieckiej książki Czołg. To znaczy, Technology of Tanks umożliwia dogłębne poznanie budowy czołgu, a jednocześnie jest to książka napisana przystępnym językiem. W mojej ocenie Technology of Tanks to książka bardzo wartościowa.

World War II Ballistics: Armor and Gunnery. Książka z 2001 roku, autorzy książki to Lorrin Rexford Bird oraz Robert D. Livingston. Książka tyczy się drugowojennych armat czołgowych i pancerzy. W mojej ocenie jest to bardzo dobra pozycja, napisana do tego przystępnym językiem.

Reklamy
Porządne książki o czołgach

Mechanizm skrętu czołgu T-72

Dziś wpis o radzieckim zimnowojennym czołgu podstawowym T-72, a konkretnie o jego mechanizmie skrętu. W sumie to mam pewne wątpliwości czy termin mechanizm skrętu powinien być tutaj stosowany, ale o tym za chwilę. Spójrzmy najpierw na rysunek przedstawiający jak zbudowany jest układ napędowy czołgu T-72:

T-72_mech_skret_diagram

Na powyższym rysunku widzimy że czołg T-72 ma dwie planetarne skrzynie biegów, występujące pod oznaczeniami SB1 oraz SB2 (litery SB to oczywiście skrótowiec od terminu skrzynia biegów). Na rysunku skrzynia biegów SB1 współpracuje z prawą gąsienicą, a skrzynia biegów SB2 współpracuje z gąsienicą lewą. Oczywiście, pomiędzy skrzynią biegów a kołem napędowym, znajduje się przekładnia boczna. Czołg T-72 ma dwie przekładnie boczne,  PB1 oraz PB2. Przekładnia boczna PB1 współpracuje z prawym kołem napędowym, natomiast przekładnia boczna PB2 współpracuje z lewym kołem napędowym. Obie przekładnie boczne mają za zadanie zwiększać moment obrotowy (tak jak przekładnia główna w samochodzie). Pomiędzy skrzyniami biegów a silnikiem, znajduje się przekładnia pośrednia (oznaczona jako PP).

Jak więc widzimy na powyższym rysunku, T-72 nie ma typowego mechanizmu skrętu. Czołg ten ma dwie planetarne skrzynie biegów, które pełnią rolę zarówno zwykłej skrzyni biegów, jak i mechanizmu skrętu. To znaczy, jeśli kierowca zmieni pozycję dźwigni zmiany biegów, to w obu skrzyniach biegów zmieni się przełożenie. Ujmując to inaczej, jeśli kierowca zmieni pozycję dźwigni zmiany biegów z pozycji bieg drugi na bieg trzeci, to obie skrzynie biegów przejdą z biegu drugiego, na bieg trzeci. Według posiadanych przeze mnie informacji, w czołgu T-72, przed zmianą biegu, należy wcisnąć pedał sprzęgła (który to wcale nie steruje sprzęgłem głównym, ale o tym w dalszej części wpisu).

Jednak jak już wspomniałem, planetarne skrzynie biegów czołgu T-72, pełnią nie tylko rolę zwykłej skrzyni biegów, lecz również rolę mechanizmu skrętu. W czołgu T-72, do skręcania wozem, służą dwie dźwignie. Jeśli chcemy skręcić w lewo, pociągamy do siebie dźwignię lewą. Analogicznie, skręt w prawo wymaga pociągnięcia do siebie dźwigni prawej. Co się stanie po pociągnięciu do siebie dźwigni (przykładowo) lewej? Otóż wtedy lewa skrzynia biegów przejdzie o jeden bieg niżej, co da nam mniejszą prędkość lewej gąsienicy, a tym samym skręt w lewo. Przykładowo, jeśli mamy dźwignię zmiany biegów ustawioną na pozycję bieg trzeci, to wtedy pociągnięcie do siebie lewej dźwigni mechanizmu skrętu, spowoduje że lewa skrzynia biegów przejdzie na bieg drugi. Tym samym lewa skrzynia biegów będzie miała włączony bieg drugi, prawa skrzynia biegów będzie nadal pracować na biegu trzecim, co da nam skręt w lewo.

Dodam że przy dźwigni zmiany biegów ustawionej na pozycji bieg pierwszy, pociągnięcie do siebie lewej dźwigni mechanizmu skrętu, spowoduje wysprzęglenie i przyhamowanie lewej gąsienicy- czyli czołg będzie się obracać wokół lewej gąsienicy (unieruchomionej). Tak samo w przypadku dźwigni zmiany biegów ustawionej na pozycji bieg wsteczny– wtedy też pociągnięcie do siebie lewej dźwigni mechanizmu skrętu spowoduje że czołg będzie się obracać wokół lewej gąsienicy (unieruchomionej). Spotkałem się z tezą że skręt czołgu wokół unieruchomionej gąsienicy powinien zwać się z angielska pivot turn.

Czołg T-72 nie może skręcać na zasadzie jedna gąsienica jedzie do przodu, druga do tyłu. Jeśli idzie o terminologię anglojęzyczną, możliwość skręcania w taki sposób zwie się neutral steering.

 

Układ z dwiema planetarnymi skrzyniami biegów, zastosowany w czołgu T-72, można uznać za mechanizm skrętu grupy drugiej. To znaczy, w T-72, podczas skrętu, gąsienica wyprzedzająca (ta jadąca szybciej) ma taką samą prędkość, jaką miała podczas ruchu prostoliniowego. Jednocześnie, podczas wykonywania skrętu, środkowa część kadłuba porusza się wolniej, względem prędkości jaką miała podczas ruchu prostoliniowego.

 

W czołgu T-72 promień skrętu zależy od wybranego biegu. Najmniejszy promień skrętu jest na biegu pierwszym i wstecznym- jak już wspominałem, czołg skręca wtedy wokół unieruchomionej gąsienicy. Poniżej zamieszczam tabelkę z książki Budowa pojazdów gąsienicowych (autorzy książki: Tadeusz Koszycki i Józef Wysocki), która to tyczy się zależności pomiędzy wybranym biegiem, a minimalnym promieniem skrętu czołgu T-72 (minimalny promień skrętu jest jednocześnie głównym promieniem skrętu). Aby wyjaśnić poniższą tabelę, informuję że przy wybraniu pierwszego biegu, czołg wykonuje skręt o promieni 1B, co oznacza obracanie się wokół unieruchomionej gąsienicy (litera B oznacza odległość pomiędzy koleinami gąsienic). Jednocześnie, przy skręcie o promieni 1B, promień skrętu wyrażony w metrach wynosi 2,79.

T-72_mech_skret_prom_skret

 

Poniżej cytat z książki Budowa pojazdów gąsienicowych, tyczący się tego, jak wypada układ bazujący na dwóch planetarnych skrzyniach biegów (rozwiązanie zastosowane w czołgu T-72), na tle dwustopniowego planetarnego mechanizmu skrętu (rozwiązanie znane z czołgów T-54/T-55):

Działanie UPM [Układu Przeniesienia Mocy- przypis autora bloga] i przebiegi strumieni mocy w czasie skrętu wozu z dwoma planetarnymi skrzyniami biegów jest analogiczne jak z UPM posiadającego dwustopniowy PMS [Planetarny Mechanizm skrętu- przypis autora bloga]. W porównaniu z dwustopniowym PMS układ ten zapewnia nieco gorszą zwrotność, gdyż na każdym biegu można uzyskać tylko jeden główny promień skrętu.

 

Tutaj zamieszczam kolejny cytat z książki Budowa pojazdów gąsienicowych, tyczący się układu napędowego czołgu T-72:

Zastosowane dwie skrzynie biegów, połączone równolegle z przekładnią pośrednią, służą one nie tylko do zmiany prędkości i sił napędowych na gąsienicach, ale również do wykonywania skrętów, hamowania pojazdu oraz do odłączania silnika od kół napędzających gąsienice. Wszystkie te rodzaju pracy uzyskuje się przez włączenie odpowiednich mechanizmów ciernych (sprzęgieł i hamulców) skrzyni biegów. Do włączania odpowiednich ciernych i zapewnienie sterowania pojazdem, układ przeniesienia mocy wyposażono w mechaniczno-hydrauliczny układ sterowania.

 

Warto zauważyć że obie skrzynie biegów czołgu T-72, to nie są zwykłe skrzynie biegów z kołami zębatymi o osiach nieruchomym. Czołg T-72 ma planetarne skrzynie biegów, czyli takie skrzynie biegów, gdzie przynajmniej niektóre koła zębate mają osie przemieszczające się w przestrzeni. Czym charakteryzuje się urządzenie zwane przekładnią planetarną? Jedną z cech przekładni planetarnej jest to, że nie trzeba zaprzestawać doprowadzania do niej mocy, przed zmianą przełożenia. Dodatkowo przekładnia planetarna może być skonstruowana tak, aby pełnić rolę sprzęgła.

Co ciekawe, czołg T-72 nie ma sprzęgła głównego! Czyli czołg T-72 nie ma sprzęgła umieszczonego pomiędzy silnikiem a skrzyniami biegów, sterowanego przy pomocy pedału sprzęgła. Jednocześnie stanowisko kierowcy czołgu T-72 ma pedał sprzęgła! Czym więc steruje pedał sprzęgła w czołgu T-72? Aby odpowiedzieć na to pytanie, zamieszczam kolejny cytat z książki Budowa pojazdów gąsienicowych:

Ruszanie pojazdu z miejsca i przełączenie biegów dokonuje się za pomocą pedału odłączania skrzyni biegów, który spełnia rolę pedału sprzęgła głównego. Przez wciśnięcie pedału odłączenia następuje spadek ciśnienia w siłownikach wszystkich sprzęgieł i hamulców (siłowniki zostają połączone ze zlewem), a ponowne zwolnienie pedału powoduje włączenie wcześniej wybranego biegu.

 

Poniżej zamieszczam tabelkę z książki Budowa pojazdów gąsienicowych. Tabelka ta pokazuje jakim przełożeniem charakteryzują się skrzynie biegów czołgu T-72, na poszczególnych biegach. Największe przełożenie jest na biegu wstecznym:

T-72_skrzynia_przelozenia

 

 

Poniżej zbliżona tabela, lecz pochodząca z bloga Tankograd. Poniższa tabela pokazuje nie tylko przełożenie skrzyń biegów na poszczególnych biegach, lecz również maksymalną prędkość jaką da się uzyskać na poszczególnych biegach:

Maksymalna prędkość na poszczególnych biegach (km/h) Przełożenie na poszczególnych biegach
1 bieg: 7.32
2 bieg: 13:59
3 bieg: 17.16
4 bieg: 21.47
5 bieg: 29.51
6 bieg: 40.81
7 bieg: 60
Wsteczny: 4.18
1 bieg: 8.173
2 bieg: 4.40
3 bieg: 3.485
4 bieg: 2.787
5 bieg: 2.027
6 bieg: 1.467
7 bieg: 1.0
Wsteczny: 14.3

Mechanizm skrętu czołgu T-72

Sherman- wysokość przedziału bojowego

Dziś wpis o amerykańskim drugowojennym czołgu średnim M4 Sherman. Nie będzie to zresztą pierwszy wpis o Shermanie na moim blogu. Ale do rzeczy- dziś przyjrzymy się wysokości przedziału bojowego Shermana. Najpierw jednak wyjaśnię co mam na myśli pisząc wysokość przedziału bojowego. Otóż mam na myśli wysokość pomiędzy podłogą z której korzystają znajdujący się w wieży czołgiści, a dachem wieży. Pisząc o podłodze, nie mam wcale na myśli dna kadłuba czołgu- w wielu czołgach podłoga z której korzystają czołgiści wieżowi znajduje się sporo ponad dnem kadłuba. Tak też jest w Shermanie, gdzie podłoga kosza wieży znajduje się sporo ponad dnem kadłuba, ze względu na wał napędowy przechodzący pod koszem wieży.

Ujmując to innymi słowami, pisząc wysokość przedziału bojowego, mam na myśli wysokość załogowej części przedziału bojowego.

 

Biorąc pod uwagę że Sherman to czołg charakteryzujący się stosunkowo wysoką sylwetką, można by oczekiwać, że pomiędzy podłogą kosza wieży, a dachem wieży, będzie duża wysokość. Czyli można by oczekiwać że Sherman będzie charakteryzował się dużą wysokością przedziału bojowego. Tak jednak nie jest. Znane mi dane wskazują że Sherman, choć jest wygodnym czołgiem, to nie ma wcale przesadnie dużej wysokości przedziału bojowego (link). Taka sytuacja ma miejsce, bowiem choć w Shermanie jest duża wysokość pomiędzy dnem kadłuba a dachem wieży, to jednocześnie podłoga kosza wieży również znajduje się sporo ponad dnem kadłuba.

Tutaj dochodzimy do clou mojego wpisu. Otóż okazuje się że w Shermanie wysokość przedziału bojowego nie była stała. To znaczy, wysokość pomiędzy podłogą kosza wieży, a dachem wieży, zależała od wersji czołgu Sherman. Istnieją wersje z większą wysokością przedziału bojowego, istnieją również wersje z mniejszą wysokością przedziału bojowego. Spójrzmy teraz na poniższy rysunek:

Sherman_kosz_zarys_1Przekrój poprzeczny czołgu Sherman. Po lewej suchy Sherman uzbrojony w armatę M3 75 mm. Po prawej mokry Sherman uzbrojony w armatę M3 75 mm. Niebieskie linie to zarys kosza wieży. Niebieskie strzałki wskazują wysokość przedziału bojowego.

 

Jak widać na powyższym rysunku, w suchych Shermanach z armatą M3 75 mm, centralna część podłogi kosza wieży, znajduje się we wnętrzu dolnej części kadłuba. Natomiast w mokrych Shermanach z armatą M3 75 mm (wozy M4A3 75(W) ), podłoga kosza wieży znajduje się we wnętrzu górnej części kadłuba. Ergo, w czołgach M4A3 75(W), czyli w mokrych Shermanach z armatą M3 75 mm, wysokość przedziału bojowego jest mniejsza, niż w suchych Shermanach z armatą M3 75 mm.

Czemu w wozach mokrych podłogę kosza wieży umieszczono wyżej? W mojej ocenie najpewniej szło o wygospodarowanie miejsca na amunicję armatnią. Otóż suche Shermany miały główny zapas amunicji umieszczony we wnętrzu sponsonów, czyli we wnętrzu górnej części kadłuba. Takie rozwiązanie, w razie przebicia pancerza, narażało amunicję armatnią na bezpośrednie trafienie wrogim pociskiem. Aby zapobiec takiej sytuacji, w mokrych Shermanach umieszczono główny zapas amunicji na dnie kadłuba czołgu. Wyżej umieszczona podłoga kosza wieży oznaczała większą wysokość pomiędzy nią a dnem kadłuba, czyli więcej miejsca na denny magazyn amunicji.

 

Warto zauważyć że wśród Shermanów mokrych, nie wszystkie uzbrojone były w armatę M3 75 mm. Wręcz przeciwnie, większość mokrych Shermanów to były wozy z potężniejszą armatą M1 76 mm. Co ciekawe, pomiędzy mokrymi Shermanami z armatą M3 75 mm, a mokrymi Shermanami z armatą M1 76 mm, występują istotne różnice tyczące się konstrukcji kosza wieży. Spójrzmy na poniższy rysunek:

Sherman_kosz_zarys_2

Po lewej mokry Sherman z armatą M3 75 mm. Po prawej mokry Sherman z armatą M1 76 mm. Jak widać, mokry wóz z armatą M1 76 mm, nie ma pełnego kosza wieży.

 

Otóż w mokrych Shermanach z armatą M3 75 mm, jest pełny kosz wieży, zapewniający obrotową podłogę dla każdego czołgisty znajdującego się w przedziale bojowym. Inaczej jest jednak w wozach mokrych z armatą M1 76 mm. Wozy te mają jedynie połowę kosza wieży. Owa połowka zapewnia obrotową podłogę dla dowódcy i działonowego, lecz nie dla ładowniczego. W mokrych Shermanach z armatą M1 76 mm, ładowniczy, jeśli nie korzysta z siedziska, stoi na pojemnikach z amunicją armatnią. Takie rozwiązanie ma zresztą pewne zalety- ułatwia ono ładowniczemu pobieranie amunicji armatniej z dna kadłuba.

Istnieje również inna różnica pomiędzy wozami mokrymi z armatą kalibru 75 mm, a wozami mokrymi z armatą kalibru 76 mm. Otóż w mokrych Shermanach z armatą M3 75 mm, naboje armatnie należące do dennego magazynu amunicji, umieszczone są pionowo. Natomiast w mokrych Shermanach z armatą M1 76 mm, naboje armatnie należące do dennego magazynu amunicji, umieszczone są ukośnie. Poniżej rysunek wyjaśniający o co chodzi:

Sherman_kosz_zarys_3Czołg oznaczony cyfrą 1 to mokry Sherman z armatą M3 75 mm, natomiast wóz oznaczony cyfrą 2 to mokry Sherman z armatą M1 76 mm.

 

Czemu jednak w mokrych Shermanach z armatą M1 76 mm, naboje armatnie należące do dennego zapasu amunicji, umieszczone zostały ukośnie? W mojej ocenie to proste. Otóż nabój armatni przeznaczony do armaty M1 76 mm, jest wyraźnie dłuższy, od naboju przeznaczonego do armaty M3 75 mm. Ergo, w mokrych Shermanach, pomiędzy podłogą kosza wieży a dnem kadłuba, jest na tyle duża wysokość, że naboje przeznaczone do armaty M3 75 mm, można umieścić pionowo. Jednak pomiędzy podłogą kosza wieży a dnem kadłuba, jest zbyt mała wysokość, aby pionowo umieścić naboje armatnie używane w armacie M1 76 mm. Dodam że nabój używany w armacie M3 75 mm nosi oznaczenie 75x350R mm, natomiast nabój używany w armacie M1 76 mm nosi oznaczenie 76,2x539R mm. Czyli nabój przeznaczony do armaty kalibru 76 mm, ma wyraźnie dłuższą łuskę, od naboju używanego w armacie kalibru 75 mm.

 

Na koniec, uważam że mokre Shermany z armatą M1 76 mm, być może miały nieznacznie większą wysokość przedziału bojowego, od mokrych Shermanów z armatą M3 75 mm. Uważam tak, bowiem wozy z armatą M1 76 mm, miały większą wieżę, od wozów z armatą M3 75 mm.

 

Sherman- wysokość przedziału bojowego

Panzer III oraz Panzer IV- długość lufy

Dziś wpis o uzbrojeniu głównym niemieckich czołgów Panzer III i Panzer IV z okresu drugiej wojny światowej. Wpis ten zahacza o balistykę wewnętrzną, a konkretnie o to, że długość lufy to nie wszystko.

Ale do rzeczy. Otóż czołg Panzer III zaczął swoją karierę bojową z uzbrojeniem głównym pod postacią armaty KwK 36 kalibru 37 mm. Później dorobił się armaty KwK 38 kalibru 50 mm, która to miała lufę o długości 42 kalibrów. Następnie czołg otrzymał uzbrojenie główne pod postacią armaty KwK 39 kalibru 50 mm, armata ta miała lufę o długości 60 kalibrów. Ostatnia wersja czołgu Panzer III miała armatę KwK 37 kalibru 75 mm.

Skupmy się teraz na różnicach pomiędzy armatą KwK 38 kalibru 50 mm (lufa o długości 42 kalibrów), a armatą KwK 39 kalibru 50 mm (lufa o długości 60 kalibrów). W tym przypadku armata z dłuższą lufą (KwK 39) nadawała pociskom większą prędkość wylotową, a tym samym pociski wystrzeliwane z armaty KwK 39, miały większą przebijalność. Czy jednak większa prędkość wylotowa pocisków, była związana jedynie z zastosowaniem dłuższej lufy? Otóż nie. Powiem więcej, najpewniej dłuższa lufa, była jedynie sprawą wtórną.

Otóż armata z krótszą lufą (KwK 38) strzelała nabojem armatnim 50x289R mm. Natomiast armata z dłuższą lufą (KwK 39) strzelała nabojem armatnim 50x419R mm. Czyli nabój armatni zastosowany w KwK 39, miał dłuższą łuskę, co oznacza większą ilość ładunku miotającego.

Do czego zmierzam? Otóż armata KwK 39 miała dłuższą lufę od KwK 38, najpewniej po to, aby optymalnie wykorzystać większą ilość ładunku miotającego. Przyjmijmy że mamy armatę z lufą o długości dobranej tak, aby w chwili wylotu pocisku z lufy, ładunek miotający był już całkowicie spalony. Przyjmijmy teraz że zastosowano nową armatę, takiego samego kalibru, z lufą o takiej samej długości, ale strzelającą potężniejszym nabojem armatnim (większa ilość ładunku miotającego). Przy takim rozwiązaniu może okazać się że w nowej armacie, w chwili wyloty pocisku z lufy, część prochu będzie pozostawać niespalona. Czyli część prochu poniekąd pójdzie na zmarnowanie, bowiem w klasycznej broni lufowej, ładunek miotający zostaje optymalnie wykorzystany do rozpędzenia pocisku wtedy, kiedy podczas spalania się ładunku miotającego, pocisk jest we wnętrzu lufy.

Oczywiście, dobrze zauważyć że w klasycznej broni lufowej, takiej jak karabin bądź armata, prędkość wylotowa pocisku, to nie jest jego prędkość maksymalna. Po tym jak pocisk już wyleci z lufy, przez wylot lufy wylatują z dużą prędkością gazy prochowe, które to oddziałują na pocisk, dodatkowo go rozpędzając. Ergo, pocisk osiąga swoją prędkość maksymalną w pewnej odległości od wylotu lufy. Trzeba jednak pamiętać że w klasycznej broni lufowej, różnica pomiędzy prędkością wylotową pocisku, a jego prędkością maksymalną, jest bardzo mała.

 

Pisałem o czołgu Panzer III, jednak w Panzer IV występowała zbliżona sytuacja. Panzer IV najpierw miał armatę KwK 37 kalibru 75 mm, z lufą o długości 24 kalibrów. Później czołg Panzer IV dorobił się armaty KwK 40 kalibru 75 mm, z lufą o długości 43 kalibrów. Armata KwK 40 nadawała pociskom znacznie większą prędkość wylotową, względem armaty KwK 37. Jednak w tym przypadku większa prędkość wylotowa również wynikała nie tylko z dłuższej lufy, lecz również z potężniejszego naboju armatniego. Armata KwK 37 strzelała nabojem 75x243R mm, natomiast armata KwK 40 strzelała amunicją 75x495R mm.

Panzer III oraz Panzer IV- długość lufy

Drobne różnice wizualne na polu bitwy

Dziś wpis o broni pancernej, a konkretnie o drobnych różnicach wizualnych, które to mogą mieć znaczenie na polu bitwy. Idzie mi konkretnie o drobne różnice wizualne pomiędzy poszczególnymi wersjami czołgów. Ale do rzeczy, przykładowo, był sobie radziecki czołg średni T-34 (T-34-76) z okresu drugiej wojny światowej. Wozy tego typu miały zazwyczaj jeden peryskop panoramiczny (panoramiczny przyrząd obserwacyjno-celowniczy), umieszczony na stanowisku dowódcy. Jednak były też wersje czołgu T-34, gdzie obok peryskopu panoramicznego umieszczonego na stanowisku dowódcy, był też drugi peryskop panoramiczny, znajdujący się na stanowisku ładowniczego (peryskop panoramiczny umieszczony na stanowisku ładowniczego pełnił jedynie rolę przyrządu obserwacyjnego). Jednocześnie te czołgi T-34, które to miały dwa peryskopy panoramiczne umieszczone na wieży, często pełniły rolę wozów dowódczych. Pisząc o wozach dowódczych, mam na myśli wozy, którymi to poruszał się dowódca pododdziału. Do czego zmierzam? Otóż podobno były przypadki, kiedy to Niemcy najpierw otwierali ogień do tych czołgów T-34, które to miały dwa peryskopy panoramiczne umieszczone na wieży, a dopiero później do wozów z jednym peryskopem panoramicznym na wieży. Robili tak, aby najpierw pozbyć się wozów dowódczych, czyli wozów najważniejszych. Aby temu zaradzić, Sowietom zdarzało się montować na tych czołgach T-34, które to miały jeden peryskop panoramiczny, atrapę drugiego peryskopu. Ot, jeśli w pododdziale wszystkie czołgi wyglądały na wozy z dwoma peryskopami panoramicznymi, to wróg nie wiedział do którego czołgu strzelać najpierw.

Jednak problemy wynikające z drobnych różnic wizualnych to nie tylko T-34. Inny przykład na to że drobne różnice w wyglądzie mogą mieć znaczenie na polu bitwy, to radziecki czołg lekki T-26 i radzieckie kołowo-gąsienicowe czołgi szybkie serii BT. Otóż zarówno w przypadku czołgów T-26, jak i w przypadku czołgów BT, występowały egzemplarze z anteną poręczową umieszczoną na wieży. Owa antena poręczowa stosowana była na wozach dowódczych i miała na tyle charakterystyczny wygląd, że wskazywała przeciwnikowi który wóz jest najważniejszy- czyli do którego wozu strzelać najpierw. Sytuacja analogiczna jak w przypadku T-34 z dwoma peryskopami panoramicznymi na wieży.

Jak na razie były jedynie przykłady z frontu wschodniego. Czas na coś z zachodu! Otóż podczas drugiej wojny światowej, armia brytyjska, obok zwykłych czołgów M4 Sherman, uzbrojonych w armatę M3 kalibru 75 mm, używała czołgów Sherman Firefly. Czołgi Sherman Firefly to były wozy przezbrojone przez Brytyjczyków w armatę 17 funtową (17 pdr), która to była znacznie bardziej efektywna przeciwko pojazdom pancernym przeciwnika, względem armaty M3 kalibru 75 mm. Przezbrojenie niektórych Shermanów w armatę 17 pdr to był w mojej ocenie dobry pomysł, jest jednak pewne wizualne ale. Otóż armata 17 funtowa miała zdecydowanie dłuższą lufę względem armaty M3 75 mm. Dodatkowo armata 17 pdr miała hamulec wylotowy, podczas gdy armata M3 75 mm hamulca wylotowego nie miała. Czyli Shermany Firefly można było łatwo odróżnić od słabiej uzbrojonych Shermanów (wozy z armatą M3 75 mm). Podobno owa różnica wizualna powodowała, że Niemcy najpierw strzelali do Shermanów Firefly, a dopiero później do wozów uzbrojonych w armatę M3 75 mm. W sumie to nie dziwne- podczas starcia dobrze najpierw pozbyć się najlepiej uzbrojonych czołgów przeciwnika, czyli wozów stanowiących największe zagrożenie. Próbowano jednak temu problemowi zaradzić- można znaleźć zdjęcie czołgu Sherman Firefly stylizowanego na wóz słabiej uzbrojony niż w rzeczywistości. Na czym polegała owa stylizacja? Otóż na środku lufy umieszczono atrapę hamulca wylotowego, a jednocześnie końcowa część lufy została pomalowana na jasny kolor. Czyli lufa wyglądała na krótszą niż w rzeczywistości.

 

Jak na razie pisałem jedynie o broni pancernej, jednak spotkałem się z tezą że i w przypadku broni strzeleckiej, drobne różnice wizualne mogą mieć znaczenie.  Mam na myśli tezę, zgodnie z którą to dobrze, jeśli strzelec wyborowy uzbrojony jest w karabin, wyglądający podobnie do zwykłego karabinu piechoty. Dzięki takiemu rozwiązaniu przeciwnikowi ma być trudniej odróżnić strzelca wyborowego od zwykłego żołnierza, czyli mają spadać szanse na to że przeciwnik skupi ogień na strzelcu wyborowym. Trudno mi jednak ocenić na ile istotne są różnice wizualne pomiędzy karabinem wyborowym a standardowym karabinem piechoty.

 

Drobne różnice wizualne na polu bitwy

Czołgowy napęd przedni- nogi kierowcy

Dziś wpis o pewnym rozwiązaniu, które to występowało w czołgach charakteryzujących się czołgowym napędem przednim. Pisząc o czołgowym napędzie przednim, mam na myśli rozwiązanie, gdzie silnik znajduje się w tylnej części wozu, a skrzynia biegów w części przedniej. Z przodu kadłuba, razem ze skrzynią biegów, znajduje się mechanizm skrętu, przekładnie główne i koła napędowe. Poniżej rysunek przedstawiający czołg charakteryzujący się czołgowym napędem przednim:

czolg_przod_nogi

Na powyższym rysunku, w tylnej części wozu, widzimy silnik (kolor szary). W przedniej części wozu, pomiędzy czerwonym a różowym czołgistą, znajduje się skrzynia biegów (kolor niebieski). Za skrzynią biegów umieszczono sprzęgło główne (kolor jasnofioletowy). Pomiędzy sprzęgłem głównym a silnikiem znajduje się wał napędowy (kolor ciemnofioletowy). Przed skrzynią biegów umieszczona została przekładnia kątowa (kolor brązowy). Od przekładni kątowej odchodzą dwie półosie (kolor różowy), z czego jedna znajduje się przed czołgistą czerwonym (kierowca), a druga przed czołgistą różowym (strzelec kadłubowego kaemu). Każda z różowych półosi zaznaczona została dodatkowo różową strzałką. Różowe półosie przekazują moc do elementów pełniących rolę mechanizmu skrętu (kolor zielony). Następnie moc zostaje przekazana do przekładni głównych (kolor pomarańczowy), po czym moc idzie do kół napędowych (kolor żółty).

Na powyższym rysunku, przy pomocy różowych strzałek, zaznaczyłem różowe półosie znajdujące się pomiędzy przekładnią kątową, a elementami pełniącymi rolę mechanizmy skrętu. Zrobiłem to nie bez powodu. Otóż owe półosie odgrywają istotną rolę w dzisiejszym wpisie. Jeśli przyjrzeć się powyższemu rysunkowi, stopy czołgistów kadłubowych znajdują się za owymi półosiami. Czyli następuje wzrost odległości pomiędzy kierowcą, a przednią krawędzią kadłuba. Oznacza to jednocześnie spadek odległości pomiędzy kierowcą, a przedziałem bojowym. Gdyby przesunąć kierowcę bardziej do przodu, można by zwiększyć odległość pomiędzy kierowcą, a przedziałem bojowym, a tym samym uzyskać w tym miejscu dodatkową przestrzeń. We wnętrzu owej dodatkowej przestrzeni zlokalizowanej pomiędzy stanowiskiem kierowcy, a przedziałem bojowym, można by coś umieścić- przykładowo, amunicję armatnią. Oczywiście, wszystko to co napisałem tyczy się również strzelca kadłubowego karabinu maszynowego.

Jest jednak pewien problem- jak przesunąć kierowcę bardziej do przodu, skoro tuż przed stopami kierowcy, znajdują się różowe półosie? Otóż jest na to rada! Można kierowcę umieścić w taki sposób, aby końcowa część jego nóg, przechodziła pod różową półosią. To samo da się zrobić ze strzelcem kadłubowego kaemu. Poniżej rysunek przedstawiający o co mi chodzi:

czolg_przod_nogi_2

Na powyższym rysunku czołg oznaczony cyfrą 1 ma stopy kierowcy i strzelca kaemu zlokalizowane za różowymi półosiami, natomiast w czołgu oznaczonym cyfrą 2 końcowa część nóg kierowcy i strzelca kadłubowego kemu przechodzi pod różowymi półosiami.

 

Jak widać na powyższym rysunku, umieszczenie kierowcy w taki sposób, aby końcowa część jego nóg przechodziła pod różową półosią, spowodowało wzrost odległości pomiędzy stanowiskiem kierowcy, a przedziałem bojowym. Tutaj jednak można zadać następujące pytanie- czy rozwiązanie zaprezentowane na powyższym rysunku, w czołgu numer 2, występowało w realnie istniejących czołgach? Otóż okazuje się że tak! W niemieckim czołgu średnim Panzer V Panther (Pantera) z okresu drugiej wojny światowej, stanowisko kierowcy było zlokalizowane mniej więcej tak, jak w czołgu numer 2, zaprezentowanym powyżej. Dodam że w Panterze, pomiędzy stanowiskiem kierowcy a przedziałem bojowym, znajdowały się umieszczone pionowo naboje armatnie. To samo tyczy się przestrzeni pomiędzy strzelcem kadłubowego kaemu a przedziałem bojowym (tam też była amunicja armatnia).

 

Oczywiście, rozwiązanie z końcową częścią nóg kierowcy przechodzącą pod półosią, nie musi służyć zwiększeniu odległości pomiędzy siedziskiem kierowcy, a przedziałem bojowym. Przynajmniej w niektórych czołgach z czołgowym napędem przednim można by takie rozwiązanie wykorzystać do skrócenia przedziału kierowania, a tym samym do zmniejszenia długości kadłuba. Krótszy kadłub oznacza mniejsze wymiary czołgu, a mniejsze wymiary czołgu to lepszy stosunek masy do poziomu ochrony pancernej. Ot, mniejszy czołg może być albo lepiej opancerzony (względem czołgu większego) przy tej samej masie wozu, albo mieć mniejszą masę przy tym samym poziomie ochrony pancernej.

 

 

 

Czołgowy napęd przedni- nogi kierowcy

Czołgowe mechanizmy skrętu i ich grupy- raz jeszcze

Dziś wpis na temat klasyfikacji czołgowych mechanizmów skrętu, a konkretnie na temat mechanizmów skrętu grupy pierwszej, drugiej i trzeciej. Co prawda napisałem już na ten temat wpis (link), ale uważam że nie zaszkodzi napisać coś jeszcze. Najpierw jednak wyjaśnię o co chodzi z owymi grupami mechanizmów skrętu (choć we wcześniejszym wpisie już to zrobiłem). Poniżej cytaty z pracy zatytułowanej Konstrukcja pojazdów gąsienicowych- układy przeniesienia mocy (autorzy: T. Koszycki, E. Kraszewski, J. Czerwonka, K. Malicki). Dodam że w poniższych cytatach zastosowano termin typ, zamiast terminu grupa. Czyli mamy nie grupę pierwszą mechanizmów skrętu, lecz typ pierwszy. Cytaty ilustrowane są rysunkami mojego autorstwa.

 

mech_skret_grupa_1

t y p   p i e r w s z y – są to mechanizmy, przy zastosowaniu których punkt zachowujący w czasie skrętu prędkość ruchu prostoliniowego (V0) znajduje się na wzdłużnej osi symetrii pojazdu. Do mechanizmów tego typu zalicza się wszystkie rodzaje mechanizmów różnicowych; prosty, podwójny, złożony i różnicowe mechanizmy skrętu o podwójnym doprowadzeniu mocy.

 

 

mech_skret_grupa_2

t y p   d r u g i – są to mechanizmy, przy zastosowaniu których punkt zachowujący w czasie skrętu prędkość ruchu prostoliniowego (V0) znajduje się na osi gąsienicy wyprzedzającej [wyprzedzająca, czyli ta która podczas skrętu porusza się z większą prędkością- przypis autora bloga]. Rozróżnia się następujące mechanizmy skrętu tego typu- sprzęgła boczne, jedno- i dwustopniowe planetarne mechanizmy skrętu oraz planetarne mechanizmy skrętu o podwójnym doprowadzeniu mocy.

 

mech_skret_grupa_3b

t y p   t r z e c i – są to mechanizmy, przy zastosowaniu których punkt zachowujący prędkość ruchu prostoliniowego przemieszcza się na zewnątrz osi gąsienicy wyprzedzającej. Taką właściwość posiadają pojazdy wyposażone w elektromechaniczny UPM [Układ Przeniesienia Mocy- przypis autora bloga] oraz hydromechaniczny z zastosowaniem oddzielnego napędu na gąsienice za pośrednictwem przekładni hydrostatycznych.

 

Na bazie powyższych cytatów można by wywnioskować, że mechanizmy skrętu grupy pierwszej są bezsprzecznie lepsze, od mechanizmów skrętu grupy drugiej, bowiem w przypadku mechanizmów skrętu grupy pierwszej, podczas wykonywania skrętu, środkowa część kadłuba pojazdu porusza się tak samo szybko, jak podczas jazdy na wprost. Czyli zasadniczo pojazd nie zwalnia podczas wykonywania skrętu. Natomiast w przypadku mechanizmów skrętu grupy drugiej, podczas wykonywania skrętu, środkowa część kadłuba pojazdu porusza się wolniej, względem jazdy na wprost. Czyli pojazd zwalnia podczas wykonywania skrętu. Jednak rzeczywistość jest bardziej skomplikowana. Otóż mechanizmy skrętu grupy drugiej mają pewną zaletę- w przypadku mechanizmów skrętu grupy drugiej, obciążenie silnika podczas wykonywania skrętu, zasadniczo jest mniejsze, niż w przypadku mechanizmów skrętu grupy pierwszej. Poniżej tabela z książki Teoria ruchu pojazdu gąsienicowego (autor: Zbigniew Burdziński):

 

mech_skretu_grupy_tab_m

Tabela odnosząca się obciążenia silnika podczas wykonywania skrętu w pojazdach z mechanizmem skrętu grupy pierwszej i w pojazdach z mechanizmem skrętu grupy drugiej. Jak widać, mechanizmy skrętu należące do grupy drugiej, wypadają lepiej.

 

Poniżej cytat z pracy Konstrukcja pojazdów gąsienicowych- układy przeniesienia mocy:

Jeśli chodzi o wybór typu mechanizmy skrętu, to lepsze właściwości zapewniają mechanizmy różnicowe [czyli mechanizmy grupy pierwszej- przypis autora bloga], gdyż większa jest prędkość kątowa skrętu, prowadzi to jednak do zwiększenia mocy potrzebnej silnika, w porównaniu z mechanizmami drugiego typu. Dlatego mechanizmy skrętu typu różnicowego należy stosować w pojazdach o dużej mocy jednostkowej silnika.

 

Nadmienię że w mojej ocenie, mechanizmy skrętu grupy drugiej, mogą charakteryzować się mniejszym obciążeniem silnika podczas wykonywania skrętu, ze względu na siłę bezwładności. To znaczy, w przypadku czołgu z mechanizmem skrętu grupy drugiej, jego kadłub podczas wykonywania skrętu porusza się wolniej, niż podczas jazdy na wprost. Czyli siła bezwładności kadłuba pomaga pokonać opory ruchu, jakie występują podczas wykonywania skrętu. Natomiast w przypadku czołgu z mechanizmem skrętu grupy pierwszej, środkowa część kadłuba wozu porusza się tak samo szybko podczas wykonywania skrętu, jak podczas jazdy na wprost. Czyli w wozie z mechanizmem skrętu należącym do grupy pierwszej kadłub nie zwalnia podczas wykonywania skrętu, stąd też siła bezwładności kadłuba nie pomaga pokonać oporów ruchu, występujących podczas wykonywania skrętu.

Dodam że sytuacja, w której siła bezwładności kadłuba, pomaga pokonać oporu ruchu, występujące podczas wykonywania skrętu, wydaje się tym bardziej pożądana, że w pojeździe gąsienicowym oporu ruchu są wyraźnie większe podczas wykonywania skrętu, niż podczas jazdy na wprost. Poniżej cytat z pracy Konstrukcja pojazdów gąsienicowych- układy przeniesienia mocy:

 

Skręt pojazdów gąsienicowych realizuje się drogą zmiany prędkości względnych gąsienic. Podczas skrętu wzdłużne osie gąsienic nie zmieniają swej równoległości wzajemnej i położenia względem kadłuba pojazdu, a zatem muszą się przemieszczać po podłoży w kierunku poprzecznym. Wskutek tego w czasie skrętu działają na pojazd oprócz oporów ruchu prostoliniowego znaczne opory skrętu. Szczególnie duże opory, kilkakrotnie przewyższające opory ruchu prostoliniowego, działają w czasie skrętu na darnistym podłożu, kiedy oprócz tarcia występują opory powodowane odkształcaniem, ścinaniem i nagarnianiem gruntu przez gąsienice.

 

Na koniec jeszcze pewna uwaga. Otóż mam wrażenie że w pojazdach gąsienicowych z mechanizmem skrętu należącym do grupy pierwszej, zazwyczaj mamy do czynienia z mechanizmem skrętu pod postacią jednego urządzenia, które to współpracuje z obiema gąsienicami. Przykładowo, w amerykańskim czołgu M4 Sherman mamy w sumie jedno urządzenie zwane w polskiej terminologii podwójnym mechanizmem różnicowym (w terminologii anglojęzycznej Controlled differential bądź też Cletrac differential), które współpracuje zarówno z lewą, jak i z prawą gąsienicą. Natomiast w pojazdach z mechanizmem skrętu należącym do grupy drugiej, mechanizm skrętu zazwyczaj występuje pod postacią dwóch oddzielnych urządzeń, z których jedno urządzenie współpracuje z lewą gąsienicą, a drugie z prawą gąsienicą. Przykładowo, radziecki czołg średni T-34 ma mechanizm skrętu bazujący na sprzęgłach bocznych. Czyli mamy jedno sprzęgło boczne odpowiedzialne za lewą gąsienicę i drugie sprzęgło boczne odpowiedzialne za prawą gąsienicę.

 

 

Czołgowe mechanizmy skrętu i ich grupy- raz jeszcze