Czołgowy napęd przedni- nogi kierowcy

Dziś wpis o pewnym rozwiązaniu, które to występowało w czołgach charakteryzujących się czołgowym napędem przednim. Pisząc o czołgowym napędzie przednim, mam na myśli rozwiązanie, gdzie silnik znajduje się w tylnej części wozu, a skrzynia biegów w części przedniej. Z przodu kadłuba, razem ze skrzynią biegów, znajduje się mechanizm skrętu, przekładnie główne i koła napędowe. Poniżej rysunek przedstawiający czołg charakteryzujący się czołgowym napędem przednim:

czolg_przod_nogi

Na powyższym rysunku, w tylnej części wozu, widzimy silnik (kolor szary). W przedniej części wozu, pomiędzy czerwonym a różowym czołgistą, znajduje się skrzynia biegów (kolor niebieski). Za skrzynią biegów umieszczono sprzęgło główne (kolor jasnofioletowy). Pomiędzy sprzęgłem głównym a silnikiem znajduje się wał napędowy (kolor ciemnofioletowy). Przed skrzynią biegów umieszczona została przekładnia kątowa (kolor brązowy). Od przekładni kątowej odchodzą dwie półosie (kolor różowy), z czego jedna znajduje się przed czołgistą czerwonym (kierowca), a druga przed czołgistą różowym (strzelec kadłubowego kaemu). Każda z różowych półosi zaznaczona została dodatkowo różową strzałką. Różowe półosie przekazują moc do elementów pełniących rolę mechanizmu skrętu (kolor zielony). Następnie moc zostaje przekazana do przekładni głównych (kolor pomarańczowy), po czym moc idzie do kół napędowych (kolor żółty).

Na powyższym rysunku, przy pomocy różowych strzałek, zaznaczyłem różowe półosie znajdujące się pomiędzy przekładnią kątową, a elementami pełniącymi rolę mechanizmy skrętu. Zrobiłem to nie bez powodu. Otóż owe półosie odgrywają istotną rolę w dzisiejszym wpisie. Jeśli przyjrzeć się powyższemu rysunkowi, stopy czołgistów kadłubowych znajdują się za owymi półosiami. Czyli następuje wzrost odległości pomiędzy kierowcą, a przednią krawędzią kadłuba. Oznacza to jednocześnie spadek odległości pomiędzy kierowcą, a przedziałem bojowym. Gdyby przesunąć kierowcę bardziej do przodu, można by zwiększyć odległość pomiędzy kierowcą, a przedziałem bojowym, a tym samym uzyskać w tym miejscu dodatkową przestrzeń. We wnętrzu owej dodatkowej przestrzeni zlokalizowanej pomiędzy stanowiskiem kierowcy, a przedziałem bojowym, można by coś umieścić- przykładowo, amunicję armatnią. Oczywiście, wszystko to co napisałem tyczy się również strzelca kadłubowego karabinu maszynowego.

Jest jednak pewien problem- jak przesunąć kierowcę bardziej do przodu, skoro tuż przed stopami kierowcy, znajdują się różowe półosie? Otóż jest na to rada! Można kierowcę umieścić w taki sposób, aby końcowa część jego nóg, przechodziła pod różową półosią. To samo da się zrobić ze strzelcem kadłubowego kaemu. Poniżej rysunek przedstawiający o co mi chodzi:

czolg_przod_nogi_2

Na powyższym rysunku czołg oznaczony cyfrą 1 ma stopy kierowcy i strzelca kaemu zlokalizowane za różowymi półosiami, natomiast w czołgu oznaczonym cyfrą 2 końcowa część nóg kierowcy i strzelca kadłubowego kemu przechodzi pod różowymi półosiami.

 

Jak widać na powyższym rysunku, umieszczenie kierowcy w taki sposób, aby końcowa część jego nóg przechodziła pod różową półosią, spowodowało wzrost odległości pomiędzy stanowiskiem kierowcy, a przedziałem bojowym. Tutaj jednak można zadać następujące pytanie- czy rozwiązanie zaprezentowane na powyższym rysunku, w czołgu numer 2, występowało w realnie istniejących czołgach? Otóż okazuje się że tak! W niemieckim czołgu średnim Panzer V Panther (Pantera) z okresu drugiej wojny światowej, stanowisko kierowcy było zlokalizowane mniej więcej tak, jak w czołgu numer 2, zaprezentowanym powyżej. Dodam że w Panterze, pomiędzy stanowiskiem kierowcy a przedziałem bojowym, znajdowały się umieszczone pionowo naboje armatnie. To samo tyczy się przestrzeni pomiędzy strzelcem kadłubowego kaemu a przedziałem bojowym (tam też była amunicja armatnia).

 

Oczywiście, rozwiązanie z końcową częścią nóg kierowcy przechodzącą pod półosią, nie musi służyć zwiększeniu odległości pomiędzy siedziskiem kierowcy, a przedziałem bojowym. Przynajmniej w niektórych czołgach z czołgowym napędem przednim można by takie rozwiązanie wykorzystać do skrócenia przedziału kierowania, a tym samym do zmniejszenia długości kadłuba. Krótszy kadłub oznacza mniejsze wymiary czołgu, a mniejsze wymiary czołgu to lepszy stosunek masy do poziomu ochrony pancernej. Ot, mniejszy czołg może być albo lepiej opancerzony (względem czołgu większego) przy tej samej masie wozu, albo mieć mniejszą masę przy tym samym poziomie ochrony pancernej.

 

 

 

Reklamy
Czołgowy napęd przedni- nogi kierowcy

Czołgowe mechanizmy skrętu i ich grupy- raz jeszcze

Dziś wpis na temat klasyfikacji czołgowych mechanizmów skrętu, a konkretnie na temat mechanizmów skrętu grupy pierwszej, drugiej i trzeciej. Co prawda napisałem już na ten temat wpis (link), ale uważam że nie zaszkodzi napisać coś jeszcze. Najpierw jednak wyjaśnię o co chodzi z owymi grupami mechanizmów skrętu (choć we wcześniejszym wpisie już to zrobiłem). Poniżej cytaty z pracy zatytułowanej Konstrukcja pojazdów gąsienicowych- układy przeniesienia mocy (autorzy: T. Koszycki, E. Kraszewski, J. Czerwonka, K. Malicki). Dodam że w poniższych cytatach zastosowano termin typ, zamiast terminu grupa. Czyli mamy nie grupę pierwszą mechanizmów skrętu, lecz typ pierwszy. Cytaty ilustrowane są rysunkami mojego autorstwa.

 

mech_skret_grupa_1

t y p   p i e r w s z y – są to mechanizmy, przy zastosowaniu których punkt zachowujący w czasie skrętu prędkość ruchu prostoliniowego (V0) znajduje się na wzdłużnej osi symetrii pojazdu. Do mechanizmów tego typu zalicza się wszystkie rodzaje mechanizmów różnicowych; prosty, podwójny, złożony i różnicowe mechanizmy skrętu o podwójnym doprowadzeniu mocy.

 

 

mech_skret_grupa_2

t y p   d r u g i – są to mechanizmy, przy zastosowaniu których punkt zachowujący w czasie skrętu prędkość ruchu prostoliniowego (V0) znajduje się na osi gąsienicy wyprzedzającej [wyprzedzająca, czyli ta która podczas skrętu porusza się z większą prędkością- przypis autora bloga]. Rozróżnia się następujące mechanizmy skrętu tego typu- sprzęgła boczne, jedno- i dwustopniowe planetarne mechanizmy skrętu oraz planetarne mechanizmy skrętu o podwójnym doprowadzeniu mocy.

 

mech_skret_grupa_3b

t y p   t r z e c i – są to mechanizmy, przy zastosowaniu których punkt zachowujący prędkość ruchu prostoliniowego przemieszcza się na zewnątrz osi gąsienicy wyprzedzającej. Taką właściwość posiadają pojazdy wyposażone w elektromechaniczny UPM [Układ Przeniesienia Mocy- przypis autora bloga] oraz hydromechaniczny z zastosowaniem oddzielnego napędu na gąsienice za pośrednictwem przekładni hydrostatycznych.

 

Na bazie powyższych cytatów można by wywnioskować, że mechanizmy skrętu grupy pierwszej są bezsprzecznie lepsze, od mechanizmów skrętu grupy drugiej, bowiem w przypadku mechanizmów skrętu grupy pierwszej, podczas wykonywania skrętu, środkowa część kadłuba pojazdu porusza się tak samo szybko, jak podczas jazdy na wprost. Czyli zasadniczo pojazd nie zwalnia podczas wykonywania skrętu. Natomiast w przypadku mechanizmów skrętu grupy drugiej, podczas wykonywania skrętu, środkowa część kadłuba pojazdu porusza się wolniej, względem jazdy na wprost. Czyli pojazd zwalnia podczas wykonywania skrętu. Jednak rzeczywistość jest bardziej skomplikowana. Otóż mechanizmy skrętu grupy drugiej mają pewną zaletę- w przypadku mechanizmów skrętu grupy drugiej, obciążenie silnika podczas wykonywania skrętu, zasadniczo jest mniejsze, niż w przypadku mechanizmów skrętu grupy pierwszej. Poniżej tabela z książki Teoria ruchu pojazdu gąsienicowego (autor: Zbigniew Burdziński):

 

mech_skretu_grupy_tab_m

Tabela odnosząca się obciążenia silnika podczas wykonywania skrętu w pojazdach z mechanizmem skrętu grupy pierwszej i w pojazdach z mechanizmem skrętu grupy drugiej. Jak widać, mechanizmy skrętu należące do grupy drugiej, wypadają lepiej.

 

Poniżej cytat z pracy Konstrukcja pojazdów gąsienicowych- układy przeniesienia mocy:

Jeśli chodzi o wybór typu mechanizmy skrętu, to lepsze właściwości zapewniają mechanizmy różnicowe [czyli mechanizmy grupy pierwszej- przypis autora bloga], gdyż większa jest prędkość kątowa skrętu, prowadzi to jednak do zwiększenia mocy potrzebnej silnika, w porównaniu z mechanizmami drugiego typu. Dlatego mechanizmy skrętu typu różnicowego należy stosować w pojazdach o dużej mocy jednostkowej silnika.

 

Nadmienię że w mojej ocenie, mechanizmy skrętu grupy drugiej, mogą charakteryzować się mniejszym obciążeniem silnika podczas wykonywania skrętu, ze względu na siłę bezwładności. To znaczy, w przypadku czołgu z mechanizmem skrętu grupy drugiej, jego kadłub podczas wykonywania skrętu porusza się wolniej, niż podczas jazdy na wprost. Czyli siła bezwładności kadłuba pomaga pokonać opory ruchu, jakie występują podczas wykonywania skrętu. Natomiast w przypadku czołgu z mechanizmem skrętu grupy pierwszej, środkowa część kadłuba wozu porusza się tak samo szybko podczas wykonywania skrętu, jak podczas jazdy na wprost. Czyli w wozie z mechanizmem skrętu należącym do grupy pierwszej kadłub nie zwalnia podczas wykonywania skrętu, stąd też siła bezwładności kadłuba nie pomaga pokonać oporów ruchu, występujących podczas wykonywania skrętu.

Dodam że sytuacja, w której siła bezwładności kadłuba, pomaga pokonać oporu ruchu, występujące podczas wykonywania skrętu, wydaje się tym bardziej pożądana, że w pojeździe gąsienicowym oporu ruchu są wyraźnie większe podczas wykonywania skrętu, niż podczas jazdy na wprost. Poniżej cytat z pracy Konstrukcja pojazdów gąsienicowych- układy przeniesienia mocy:

 

Skręt pojazdów gąsienicowych realizuje się drogą zmiany prędkości względnych gąsienic. Podczas skrętu wzdłużne osie gąsienic nie zmieniają swej równoległości wzajemnej i położenia względem kadłuba pojazdu, a zatem muszą się przemieszczać po podłoży w kierunku poprzecznym. Wskutek tego w czasie skrętu działają na pojazd oprócz oporów ruchu prostoliniowego znaczne opory skrętu. Szczególnie duże opory, kilkakrotnie przewyższające opory ruchu prostoliniowego, działają w czasie skrętu na darnistym podłożu, kiedy oprócz tarcia występują opory powodowane odkształcaniem, ścinaniem i nagarnianiem gruntu przez gąsienice.

 

Na koniec jeszcze pewna uwaga. Otóż mam wrażenie że w pojazdach gąsienicowych z mechanizmem skrętu należącym do grupy pierwszej, zazwyczaj mamy do czynienia z mechanizmem skrętu pod postacią jednego urządzenia, które to współpracuje z obiema gąsienicami. Przykładowo, w amerykańskim czołgu M4 Sherman mamy w sumie jedno urządzenie zwane w polskiej terminologii podwójnym mechanizmem różnicowym (w terminologii anglojęzycznej Controlled differential bądź też Cletrac differential), które współpracuje zarówno z lewą, jak i z prawą gąsienicą. Natomiast w pojazdach z mechanizmem skrętu należącym do grupy drugiej, mechanizm skrętu zazwyczaj występuje pod postacią dwóch oddzielnych urządzeń, z których jedno urządzenie współpracuje z lewą gąsienicą, a drugie z prawą gąsienicą. Przykładowo, radziecki czołg średni T-34 ma mechanizm skrętu bazujący na sprzęgłach bocznych. Czyli mamy jedno sprzęgło boczne odpowiedzialne za lewą gąsienicę i drugie sprzęgło boczne odpowiedzialne za prawą gąsienicę.

 

 

Czołgowe mechanizmy skrętu i ich grupy- raz jeszcze

Czołgowe zbiorniki paliwa- zagrożenie pożarowe

Dziś wpis na temat czołgowych zbiorników paliwa- a konkretnie na temat tego jak duże zagrożenie dla czołgu i jego załogi, stanowią zbiorniki paliwa, w razie przebicia pancerza wozu. Jak już pisałem w jednym z moich wpisów (link), niektóre czołgi mają wewnętrzne zbiorniki paliwa znajdujące się poza przedziałem napędowym. Ujmując to innymi słowami- w niektórych czołgach zbiorniki paliwa umieszczone są we wnętrzu przedziału załogi. Przykładowo, w radzieckim czołgu średnim T-34 z okresu drugiej wojny światowej, część zbiorników paliwa umieszczona była po bokach przedziału bojowego. Jednocześnie te zbiorniki paliwa, które umieszczono po bokach przedziału bojowego, oddzielono od załogi jedynie lekką, niepancerną blachą (falszburtą). Poniżej rysunek przedstawiający zbiorniki paliwa czołgu T-34:

T-34-76_zbiorniki

Układ paliwowy czołgu T-34. Zbiorniki czerwone i żółte znajdują się po bokach przedziału bojowego. Zbiorniki zielone umieszczone są we wnętrzu przedziału napędowego.

 

Kolejny czołg który miał wewnętrzne zbiorniki paliwa umieszczone między innymi poza przedziałem napędowym, to radziecki czołg ciężki IS-2 z okresu drugiej wojny światowej. W czołgu IS-2, we wnętrzu przedniej części kadłuba (przedział kierowania), umieszczono dwa zbiorniki paliwa. Poniżej rysunek przedstawiający zbiorniki paliwa czołgu IS-2:

IS-2_zbiorniki_blog

Układ paliwowy czołgu IS-2. Zbiorniki koloru czerwonego znajdują się we wnętrzu przedziału kierowania. Zbiornik koloru zielonego umieszczony został we wnętrzu przedziału napędowego.

 

Zbiorniki paliwa umieszczone we wnętrzu przedziału załogi, to możliwość zbudowania mniejszego pojazdu, a tym samym pojazdu o lepszym stosunku masy do poziomu ochrony pancernej. Z drugiej jednak strony, jest to rozwiązanie kontrowersyjne z punktu widzenia palności wozu w razie przebicia pancerza. Ot, jeżeli pancerz zostanie przebity, to najlepiej aby wszystkie wewnętrzne zbiorniki paliwa były we wnętrzu przedziału napędowego.

Jakiś czas temu, w książce Wozy bojowe LWP 1943-1983 (autor: Janusz Magnuski, wydawnictwo MON), znalazłem fragment który opisuje dzieje czołgu T-34 (T-34-76), znajdującego się w Muzeum Wojska Polskiego w Warszawie. We fragmencie tym opisany został między innymi pożar zbiornika paliwa tego wozu, jaki wystąpił po przebiciu pancerza. Oto fragment książki:

 

W nocy z 2 na 3 marca uczestniczył w atakach na Żabinek i tu został trafiony z boku „Panzerfaustem”, który przebił pancerz i trafił w zbiornik paliwa. Czołg zapalił się, ale załoga zdołała ugasić pożar i wycofać się do swoich. Czołg oddano do remontu, który w warunkach polowych trwał dość długo, tak że maszyna powróciła do macierzystej jednostki w początkach maja 1945 roku.

 

Z powyższego cytatu można wywnioskować że w wyniku przebicia pancerza, zbiornik paliwa może się zapalić, nawet jeśli jest napełniony olejem napędowym (paliwo to uchodzi za bezpieczniejsze od benzyny- choć można dyskutować czy słusznie). Ergo, cytat ten potwierdza tezę, że z punktu widzenia palności wozu po trafieniu, rozmieszczenie zbiorników jest ważniejsze od rodzaju paliwa. Z drugiej jednak strony, zgodnie z powyższym cytatem, załoga zdołała ugasić pożar. Co wskazuje że być może pożar paliwa jest mniej groźny od pożaru amunicji armatniej (z tego co wiem nie da się ugasić pożaru amunicji armatniej przy pomocy zwykłej, ręcznej gaśnicy).

 

Poniżej kolejny cytat tyczący się pożaru czołgowych zbiorników paliwa. Tym razem jest to cytat z rosyjskiej Wikipedii, a konkretnie cytat z artykułu o czołgu ciężkim IS-2 (link). Oto cytat:

 

Dokument ten potwierdza, że bezpieczeństwo pożarowe IS-2 pogorszyło umieszczenie wyżej wymienionych zbiorników paliwa w przedziale załogi wozu, co częściowo zostało skompensowane niższą palnością oleju napędowego w porównaniu z benzyną. Również raporty z frontowych części wskazują, że pożar IS-2 został ugaszony przez jego własną załogę przy pomocy zwykłej gaśnicy tetrowej. Należy zauważyć, że gaszenie należy przeprowadzać w maskach przeciwgazowych- przedostając się na gorące powierzchnie, czterochlorek węgla zostaje częściowo utleniony do fosgenu, który jest silną trującą substancją duszącą. Już w tym czasie w czołgach innych krajów zaczęto stosować bezpieczniejsze gaśnice na dwutlenek węgla. Podobnie jak inne czołgi tego czasu (z rzadkimi wyjątkami), IS-2 nie był przeciwwybuchowy, ze względu na umieszczenie amunicji w przedziale bojowym: wybuch amunicji gwarantował zniszczenie czołgu z całą załogą.

 

Czyli powyżej mamy kolejny cytat który wskazuje że z jednej strony zbiorniki mogły się zapalić w wyniku przebicia pancerza, a z drugiej strony można było je ugasić. Istnieje również bardzo ciekawy radziecki dokument (link), wskazujący że trafiony zbiornik paliwa mógł wybuchnąć. Zgodnie z zalinkowanym dokumentem, trafienie w pełny zbiornik paliwa, mogło być względnie bezpieczne (brak wybuchu zbiornika, a nawet brak zapalenie się paliwa). Jednocześnie przy częściowo napełnionym zbiorniku paliwa, zbiornik mógł wybuchnąć w wyniku trafienia. Zgodnie z dokumentem, najgroźniejszy współczynnik napełnienia zbiornika z punktu widzenia jego wybuchowości, to 10-15%. Ujmując to inaczej, jeśli zbiornik będzie napełniony w 10-15%, to wtedy ryzyko wybuchu zbiornika będzie największe. Zresztą, możliwe że o zalinkowanym radzieckim dokumencie zrobię oddzielny wpis.

Czołgowe zbiorniki paliwa- zagrożenie pożarowe

Ile osób może zmieścić się w czołgu?

Dziś wpis tyczący się pojemności czołgów, a konkretnie tego ile osób może wejść do czołgu. Nie będzie to wpis przesadnie rozbudowany, bowiem będzie bazował na jednym poście z forum internetowego Odkrywca. Ale do rzeczy, oto post użytkownika bonczek_hydroforgroup:

 

Szanowne Koleżanki i Koledzy !
O temperaturze rozpisywac się nie będę i możliwościach naszych czołgów jednak mogę z ręką na sercu napisac ile osób w nich się mieści bowiem studiując dawno dawno temu na WAT takie rekordy biliśmy.
Otóż do T34/85 który do dziś stoi na poligonie na Bemowie (ogólnodostepny) weszło nas 16 (szesnaście) osób do zamknięcia włazu
Do T55 albo T54 weszło nas 7 osób ale słyszałem że w jednej z jednostek koło Połczyna Zdroju weszło 8 osób (nam się nie udało)
Do T72 weszły 3 i nic więcej się nie udało
Pozdrawiam
bonczek

 

Post został oryginalnie zamieszczony w tym wątku- link. Dodam że post zamieszczony został w 2007 roku. Oczywiście, można dyskutować czy powinienem tworzyć wpis bazujący na jednym poście z forum internetowego, ale uważam że zacytowany powyżej post jest na tyle interesujący, że zasługuje na uwagę. Otóż wynika z niego że im młodszy radziecki czołg, tym mniej osób nadprogramowych może się do niego zmieścić. Czołg T-34-85 to wóz drugowojenny, który to oryginalnie miał załogę pięcioosobową. Zgodnie z zamieszczonym powyżej postem, do takiego pojazdu dało radę wejść 16 osób. Co daje aż 11 osób nadprogramowych! Tutaj nadmienię że czołgi T-34-85 eksploatowane w powojennej Polsce miały załogę zredukowaną do 4 osób, ale traktuję czołg T-34-85 jako wóz pięcioosobowy, bowiem jako taki został zaprojektowany. Czołg T-54 (bądź też jego unowocześniona wersja, T-55) to radziecki czteroosobowy czołg z wczesnego okresu zimnej wojny. Skoro do takiego pojazdu weszło 7 osób, to mamy jedynie 3 osoby nadprogramowe. Natomiast T-72 to radziecki wóz trzyosobowy z lat 70. Zgodnie z cytowanym postem, weszły do niego raptem 3 osoby, co nie daje żadnej osoby nadprogramowej.

 

Tutaj można zadać następujące pytanie- czy w takim razie im młodszy radziecki czołg, tym bardziej ciasny? Cóż, w mojej ocenie niekoniecznie. Jestem zdania że Sowieci projektowali swoje czołgi tak, aby w ich wnętrzu było jak najmniej pustej, niewykorzystanej przestrzeni. Jednocześnie uważam że Sowieci starali się eliminować pustą, niewykorzystaną przestrzeń, aby osiągnąć małe wymiary wozu, a tym samym uzyskać możliwie dobry stosunek masy do poziomu ochrony pancernej. W teście typu wepchnijmy do czołgu jak najwięcej osób, przestrzeń która standardowo pozostaje niewykorzystana, staje się przydatna. Jednocześnie owa przestrzeń niekoniecznie musi wpływać pozytywnie na komfort czołgistów. Ujmując to inaczej- możliwe że im młodszy radziecki czołg, tym mniej w jego wnętrzu pustej, niewykorzystanej przestrzeni. Jednak mała ilość pustej, niewykorzystanej przestrzeni, niekoniecznie musi oznaczać ciasne stanowiska członków załogi wozu.

Ile osób może zmieścić się w czołgu?

M4 Sherman- pewna ciekawostka

Dziś wpis na temat czołgu M4 Sherman. Przy czym wpis ten tyczyć się będzie nie tylko Shermana jako takiego, ale też układu konstrukcyjnego w którym pierścień oporowy wieży ma większą średnicę od szerokości dolnej części kadłuba. Co prawda napisałem już wpis o zbliżonej tematyce (link), ale uznałem że nie zaszkodzi napisać coś jeszcze. Tak więc na początek, spójrzmy na poniższy rysunek:

p_oporowy_terminologia_2

Na rysunku zamieszczonym powyżej, widać przekrój poprzeczny czołgu. Jak widzimy, w wozie przedstawionym na rysunku, dolna część kadłuba ma mniejszą szerokość, względem górnej części kadłuba. Kolorem czerwonym zaznaczono te fragmenty górnej części kadłuba, które wystają poza zarys dolnej części kadłuba (ujmując to inaczej, kolorem czerwonym zaznaczono sponsony). Czołg zamieszczony na rysunku ma pierścień oporowy wieży o zbliżonej średnicy, do szerokości jaką ma dolna część kadłuba. Czyli pierścień oporowy nie ma średnicy większej niż wynosi szerokość dolnej części kadłuba.

 

Istnieją jednak czołgi, w których pierścień oporowy ma większą średnicę, względem szerokości dolnej części kadłuba. Taki czołg można zobaczyć na poniższym rysunku (czołg oznaczony cyfrą 4):

sponsony_2

Jednak co to wszystko ma wspólnego z czołgiem Sherman? Otóż Sherman to właśnie wóz który ma pierścień oporowy wieży o średnicy większej, względem szerokości dolnej części kadłuba. Czyli Sherman przypomina czołg numer 4 na zamieszczonym powyżej rysunku. Jednocześnie jestem skłonny uznać że duża wysokość górnej części kadłuba czołgu Sherman, mogła ułatwiać pełne wykorzystanie pierścienia oporowego, charakteryzującego się większą średnicą, względem szerokości dolnej części kadłuba.

 

Aby wyjaśnić o co mi chodzi, najpierw zamieszczam rysunek mający z zadanie symbolizować czołg, który z jednej strony ma pierścień oporowy wieży o średnicy większej, względem szerokości dolnej części kadłuba, ale który z drugiej strony ma mniejszą wysokość górnej części kadłuba, względem tego jak wysoka jest górna część kadłuba czołgu Sherman. Oto rysunek:

sherman_dzialon_zc_1_mod

Na powyższym rysunku mamy poprzeczny przekrój kadłuba i wzdłużny przekrój wieży- czyli tak jakby czołg miał lufę wycelowaną na godzinę 9. Jak widzimy, czołgista zaznaczony kolorem czerwonym (dowódca), wystaje swoim siedziskiem poza zarys dolnej części kadłuba. Jednocześnie widzimy że zarówno czołgista czerwony, jak i czołgista niebieski (działonowy), mają swoje stopy umieszczone w dolnej części kadłuba. Niebieska linia oznacza zarys kosza wieży. Poniżej rysunek przedstawiający mniej więcej to samo, lecz w widoku od góry:

sherman_dzialonowy_zc_2ms

Jak widzimy powyżej, czołgista czerwony (dowódca) oraz czołgista zielony (ładowniczy), wystają swoim siedziskiem poza zarys dolnej części kadłuba. Jednocześnie wszyscy czołgiści mają swoje stopy umieszczone we wnętrzu dolnej części kadłuba (stopy nie wystają poza zarys dolnej części kadłuba). Widoczne z przodu kadłuba dwie niewielkie białe sylwetki to kierowca i strzelec kadłubowego karabinu maszynowego- nie mają one jednak w naszych dzisiejszych rozważaniach istotnego znaczenia.

 

Powyższe dwa rysunki nie przedstawiają jednak sytuacji występującej w czołgu Sherman. Otóż Sherman miał zdecydowanie większą wysokość górnej części kadłuba, względem czołgu przedstawionego powyżej. Oto rysunek mający za zadanie przedstawiać czołg Sherman:

sherman_dzialon_sh_1

Spójrzmy na rysunek zamieszczony powyżej: widzimy przekrój poprzeczny kadłuba i przekrój wzdłużny wieży (lufa wycelowana na godzinę 9). Jak można zauważyć, nie dość że dowódca (czerwony) wystaje swoim siedziskiem poza zarys dolnej części kadłuba, to jednocześnie działonowy (niebieski) wystaje swoimi stopami poza zarys dolnej części kadłuba. Dzieje się tak, bowiem ze względu na dużą wysokość górnej części kadłuba, działonowy nie ma żadnej części swojego ciała umieszczonej w dolnej części kadłuba. Ot, zazwyczaj czołgista wieżowy ma górną część swojego ciała umieszczoną w wieży, środkową w górnej części kadłuba, a stopy umieszczone w dolnej części kadłuba. W Shermanie działonowy ma nawet stopy umieszczone w górnej części kadłuba. Poniżej rysunek mający przedstawiać to samo, tyle że widoczne od góry:

sherman_dzialonowy_sh_2m

Jak widać powyżej, siedzisko dowódcy (czołgista czerwony) i siedzisko ładowniczego (czołgista zielony) wystają poza zarys dolnej części kadłuba. Jednocześnie stopy działonowego (żołnierz niebieski) również wystają poza zarys dolnej części kadłuba.

 

Tutaj przydała by się jakaś konkluzja. Otóż moja konkluzja jest taka: uważam że duża wysokość górnej części kadłuba czołgu Sherman, ułatwiała pełne wykorzystanie jego pierścienia oporowego. Może i ułatwiała w nieznacznym stopniu, ale jednak ułatwiała.

 

 

M4 Sherman- pewna ciekawostka

Alianckie armaty kontra Pantera i Tygrys

Dziś wpis o dwóch niemieckich czołgach z okresu drugiej wojny światowej- a konkretnie o czołgu średnim Panzer V Panther (Pantera) i czołgu ciężkim Panzer VI Tiger (Tygrys). Oba wozy uchodzą za pojazdy bardzo dobrze opancerzone jak na drugowojenne standardy. Tym samym dziś przyjrzymy się temu, jaki poziom ochrony pancernej oferował pancerz obu pojazdów.

 

Najpierw spójrzmy na grubość sprowadzoną pancerza obu wozów (sprowadzoną do pionu). Tygrys miał przedni pancerz kadłuba o grubości rzeczywistej wynoszącej 100 mm. Boczne górne płyty kadłuba miały 80 mm grubości rzeczywistej, a boczne dolne 60 mm. W przypadku Tygrysa można przyjąć że grubość rzeczywista odpowiada mniej więcej grubości sprowadzonej, bowiem pancerz czołgu Tiger był odchylony od pionu pod bardzo małym kątem (pancerz praktycznie pionowy).

Teraz przyjrzymy się Panterze. Przedni górny pancerz Pantery miał 80 mm grubości rzeczywistej, przy czym był on nachylony pod kątem 55 stopni od pionu, co dawało trochę poniżej 140 mm grubości sprowadzonej. Warto też zauważyć że pancerz nachylony potrafi być bardziej skuteczny niż by to wynikało z grubości sprowadzonej. Ego, przedni górny pancerz Pantery był bardziej odporny od przedniego pancerza Tygrysa. Co innego boki kadłuba- początkowo boczny górny pancerz Pantery miał 40 mm grubości rzeczywistej, przy nachyleniu pod kątem 40 stopni od pionu. Dawało to 52 mm grubości sprowadzonej. W późniejszych wersjach Pantery zastosowano boczny górny pancerz o grubości rzeczywistej wynoszącej 50 mm, przy nachyleniu pod kątem 30 stopni od pionu, co dawało 57 mm grubości sprowadzonej. Boczny dolny pancerz Pantery miał 40 mm grubości (zarówno rzeczywistej, jak i sprowadzonej, bowiem był to pancerz pionowy). Boczny dolny pancerz mógł być dodatkowo zasłonięty fartuchem o grubości 5 mm- dawało to 45 mm bocznego dolnego pancerza. Można więc uznać że boczny pancerz Pantery był zdecydowanie słabszy od bocznego pancerza Tygrysa.

Tutaj warto zauważyć że grubość sprowadzona przedniego pancerza kadłuba czołgu Tiger (100 mm), nie wydaje się ekstremalnie wielka, szczególnie jeśli wziąć pod uwagę bardzo dużą masę wozu (57 ton). Dla porównania- znacznie lżejszy radziecki czołg średni T-34 (masa w granicach 26-32 ton) miał przedni górny pancerz o grubości sprowadzonej wynoszącej około 90 mm. Również amerykański czołg średni M4 Sherman (masa w okolicach 30 ton) miał grubość sprowadzoną przedniego górnego pancerza wynoszącą 90 mm. Taka argumentacja jest jednak w moich oczach naciągana. Otóż pancerze nie walczą z wrogimi pancerzami, lecz z wrogimi armatami. Jeżeli mamy w czołgu pancerz o grubości (dajmy na to) 50 mm, który dobrze chroni przed wrogimi pociskami, to jest to pancerz dobry. Jeżeli mamy w czołgu pancerz o grubości 80 mm, który słabo chroni przed wrogimi pociskami, to jest to pancerz słaby. Tutaj należy zadać pytanie: jak dobrze pancerz Tygrysa (i Pantery) chronił przed wrogimi pociskami?

 

Aby odpowiedzieć na to pytanie, posłużę się kilkoma grafikami. Z tego co wiem grafiki te pochodzą z okresu drugiej wojny światowej. Dodam że w zamieszczonych poniżej grafikach brano pod uwagę nie tylko czołg ustawiony do armaty idealnie przodem oraz idealnie bokiem, lecz również czołg ustawiony do armaty przednim rogiem. W mojej ocenie to istotne, bowiem czołg ustawiony do armaty przednim rogiem, może być bardziej odporny na ostrzał, niż taki sam czołg ustawiony do armaty idealnie przodem bądź idealnie bokiem. Spójrzmy więc na pierwszą grafikę:

 

75mm_panther_tiger

Powyższa grafika przedstawia odporność Tygrysa i Pantery na ostrzał prowadzony z armaty M3 75 mm, przy użyciu amunicji przeciwpancernej M61 (pełnokalibrowy pocisk z czepcem ochronnym i czepcem balistycznym, w terminologii anglojęzycznej APCBC). Armata M3 75 mm stanowiła uzbrojenie amerykańskich czołgów średnich M4 Sherman (była to ta słabsza armata montowana w Shermanach). Jak widać, przód obu niemieckich pojazdów był wręcz kuloodporny dla armaty M3. Również boczny pancerz obu niemieckich wozów, był w stanie ochronić przed ostrzałem prowadzonym z armaty M3, przy odpowiednim nachyleniu w płaszczyźnie poziomej. Widać też że boczny pancerz Tygrysa chronił lepiej niż boczny pancerz Pantery. Teraz kolejna grafika:

 

M7_gun_panther_tiger

Grafika zamieszczona powyżej przedstawia odporność Tygrysa i Pantery na ostrzał prowadzony z amerykańskiej armaty M7, przy użyciu amunicji przeciwpancernej M62 (pełnokalibrowy pocisk z czepcem ochronnym i czepcem balistycznym). Armata M7 stanowiła uzbrojenie amerykańskiego niszczyciela czołgów M10. Warto zauważyć że pod względem osiągów, armata M7 była bardzo zbliżona do armaty M1 76 mm, stanowiącej uzbrojenie późnych czołgów Sherman (ta mocniejsza armata Shermanowska). Zgodnie z powyższą grafiką, armata M7 mogła przebić pancerz Tygrysa jeśli stał on przodem bądź bokiem do armaty. Jeśli jednak Tygrys stał przednim rogiem do armaty, wtedy zarówno pancerz przedni, jak i boczny, chroniły przed ostrzałem. Na powyższej grafice widać również wysoką odporność przedniego górnego pancerza Pantery i znacznie mniejszą odporność jej pancerza bocznego. Czas na kolejną grafikę:

 

17pdr_panther_tiger_front

Tym razem odporność obu niemieckich wozów na ostrzał prowadzony z brytyjskiej armaty 17 funtowej, przy użyciu pełnokalibrowych pocisków przeciwpancernych z czepcem ochronnym i czepcem balistycznym. Dodam że armata 17 funtowa stanowiła między innymi uzbrojenie czołgów Sherman Firefly (brytyjski tuning Shermana). Zgodnie z powyższą grafiką, armata 17 funtowa miała duże szanse przebić pancerz obu niemieckich wozów, lecz widać również że w niektórych sytuacjach pancerz obu pojazdów był w stanie ochronić przed brytyjską armatą. Oto kolejna grafika:

 

17pdr_panther_tiger_rear

Tym razem znów ostrzał prowadzony przez armatę 17 funtową przy użyciu amunicji APCBC, lecz w tym przypadku niemieckie wozy ustawione są tyłem bądź tylnym rogiem do armaty. Powyższa grafika nie zainteresowała mnie zbytnio, bowiem raczej niewiele pocisków trafia w tylny pancerz wozu.

 

Na koniec przydała by się jakaś konkluzja. Tak więc w mojej ocenie prawdziwa jest powszechna opinia, zgodnie z którą czołgi Panther i Tiger, charakteryzowały się dobrym poziomem ochrony pancernej. Szczególnie jeśli wziąć pod uwagę że jeszcze w pierwszej połowie 1944 roku Amerykanie nie używali bojowo Shermanów z armatą M1 76 mm (ta mocniejsza armata). Sowieci co prawda w pierwszej połowie 1944 roku używali bojowo czołgów T-34-85, lecz nadal w tym okresie u Sowietów dominowały T-34 (T-34-76) uzbrojone w armatę F-34, która nie była wcale lepsza od amerykańskiej armaty M3 75 mm, stanowiącej uzbrojenie wczesnych i średnich Shermanów. A jak można zobaczyć na pierwszej grafice, armata M3 75 mm nie była przesadnie dobrą bronią, jeśli chcieć zwalczać Pantery i Tygrysy.

Alianckie armaty kontra Pantera i Tygrys

M4A2 Sherman- radziecka opinia

Dziś wpis o broni pancernej, a konkretnie wpis ten tyczyć się będzie radzieckiej opinii na temat amerykańskiego czołgu średniego M4A2 Sherman. Dodam że M4A2 to wersja Shermana napędzana silnikiem Diesla, przy czym ów silnik zbudowany był z dwóch dwusuwowych sześciocylindrowych silników wysokoprężnych Detroit Diesel. Oto ów opinia w moim tłumaczeniu:

 

Ze względu na dużą prędkość, czołg M4A2 jest bardzo wygodny w eksploatacji i zapewnia dużą manewrowość. Uzbrojenie jest zgodne z jego konstrukcją i ma pociski odłamkowe i przeciwpancerne o bardzo dużej przebijalności. Działo kalibru 75 mm i dwa karabiny maszynowe Browninga są bezproblemowe. Wady zawierają dużą wysokość, czyniącą go większym celem na polu bitwy. Pancerz, mimo większej grubości (60 mm), nie spełnia standardów. Były przypadki kiedy to został przebity z karabinu przeciwpancernego z odległości 80 metrów. Dodatkowo było sporo przypadków kiedy Ju-87, podczas bombardowania czołgów, przebił boczny pancerz i pancerz wieży, prowadząc ogień z działek kalibru 20 mm, powodując straty wśród członków załogi. W porównaniu do T-34, M4A2 jest łatwiejszy w obsłudze i bardziej trwały podczas wykonywania długich przemarszów, bowiem silniki nie wymagają częstej regulacji. W walce czołgi te sprawdzają się dobrze.

 

Powyższa opinia zawiera ciekawą informację- mam na myśli wzmiankę którą odebrałem jako sugestię, że przedni pancerz kadłuba czołgu Sherman, mógł zostać przebity z karabinu przeciwpancernego. Dodam że najpewniej chodzi o radziecki karabin przeciwpancerny PTRD bądź PTRS. Przy czym oba karabiny strzelały nabojem 14,5×114 mm, który to wydaje się zdecydowanie za słaby aby przebić przedni pancerz Shermana. Otóż przedni górny pancerz kadłuba czołgu Sherman początkowo nachylony był pod kątem 57 stopni i miał grubość rzeczywistą wynoszącą około 51 mm (2 cale), co dawało trochę ponad 90 mm grubości sprowadzonej. Po pewnym czasie zmniejszono nachylenie przedniego górnego pancerza (do 47 stopni) i zwiększono jego grubość rzeczywistą (do 63,5 mm/2,5 cala)- stąd też pancerz nadal miał około 90 mm grubości sprowadzonej. Natomiast karabiny ppanc PTRD i PTRS przebijały około 40 mm stali.

 

Jak więc wyjaśnić informację zgodnie z którą przedni pancerz czołgu Sherman mógł został przebity z radzieckiego karabinu ppanc? Cóż, może ów informacja nie jest zgodna z rzeczywistością. Jestem jednak zdania że być może faktycznie przedni pancerz czołgu Sherman mógł zostać przebity przez radziecki karabin przeciwpancerny, oczywiście zakładając bardzo niekorzystne dla czołgu okoliczności (mała odległość, pocisk trafiający w pancerz pod odpowiednik kątem). Chodzi mi mianowicie o kompozycję pancerza tych Shermanów, które to miały kadłub wykonany poprzez walcowanie (do tego typu wozów zalicza się między innymi wersja M4A2) i jednocześnie przedni górny pancerz nachylony pod kątem 57 stopni. Otóż w takich wozach przedni górny pancerz nie był jednolitą płytą pancerną wykonaną poprzez walcowanie, lecz zbiorem małych płyt pancernych, połączonych ze sobą spawami. W walcowanych wozach z przednim górnym pancerzem nachylonym pod kątem 57 stopni, najczęściej przedni górny pancerz powstawał poprzez zespawanie ze sobą pięciu płyt. Dodatkowo nie zawsze wszystkie płyty były walcowane- spośród tych pięciu płyt, często dwie z nich wykonane były poprzez odlewanie (co czyni nazwę kadłub walcowany pewnym uproszczeniem). Ogólnie rzecz biorąc, jestem zdania że walcowane Shermany z przednim górnym pancerzem nachylonym pod kątem 57 stopni, miały bardzo słabą kompozycję pancerza. Więcej na temat kompozycji pancerza czołgów Sherman można znaleźć w jednym z moich poprzednich wpisów- link.

Kolejny punkt- jakość pancerza. Z tego co wiem przez pewien czas od rozpoczęcia produkcji czołgów na masową skalę, Amerykanie mieli problemy z jakością pancerzy odlewanych. A jak wcześniej wspomniałem, niektóre Shermany walcowane, wbrew nazwie, miały przedni górny pancerz zawierający płyty odlewane.

No i dochodzimy do osłony przekładni- przedni dolny pancerz kadłuba czołgu Sherman to była osłona przekładni, łączona z resztą czołgu przy pomocy śrub. Ów osłonę można było odłączyć, aby uzyskać dostęp do elementów układu przeniesienia napędu (mam na myśli takie elementy wozu jak skrzynia biegów i mechanizm skrętu). Tutaj warto zauważyć że Sherman miał układ silnik z tyłu, skrzynia biegów z przodu. Spośród trzech typów osłony przekładni (trzyczęściowa, jednoczęściowa wczesna, jednoczęściowa późna) jedynie osłona jednoczęściowa późna charakteryzowała się optymalnym kształtem z punktu widzenia ochrony pancernej. Nieoptymalny kształt innych typów osłony przekładni mógł ułatwiać przebicie pancerza. Dodatkowo wszystkie 3 typy osłony przekładni wykonane były poprzez odlewanie, a jak wcześniej wspomniałem, początkowo Amerykanie mieli problemy z jakością odlewów.

M4A2 Sherman- radziecka opinia