Czołgowy napęd przedni- nogi kierowcy

Dziś wpis o pewnym rozwiązaniu, które to występowało w czołgach charakteryzujących się czołgowym napędem przednim. Pisząc o czołgowym napędzie przednim, mam na myśli rozwiązanie, gdzie silnik znajduje się w tylnej części wozu, a skrzynia biegów w części przedniej. Z przodu kadłuba, razem ze skrzynią biegów, znajduje się mechanizm skrętu, przekładnie główne i koła napędowe. Poniżej rysunek przedstawiający czołg charakteryzujący się czołgowym napędem przednim:

czolg_przod_nogi

Na powyższym rysunku, w tylnej części wozu, widzimy silnik (kolor szary). W przedniej części wozu, pomiędzy czerwonym a różowym czołgistą, znajduje się skrzynia biegów (kolor niebieski). Za skrzynią biegów umieszczono sprzęgło główne (kolor jasnofioletowy). Pomiędzy sprzęgłem głównym a silnikiem znajduje się wał napędowy (kolor ciemnofioletowy). Przed skrzynią biegów umieszczona została przekładnia kątowa (kolor brązowy). Od przekładni kątowej odchodzą dwie półosie (kolor różowy), z czego jedna znajduje się przed czołgistą czerwonym (kierowca), a druga przed czołgistą różowym (strzelec kadłubowego kaemu). Każda z różowych półosi zaznaczona została dodatkowo różową strzałką. Różowe półosie przekazują moc do elementów pełniących rolę mechanizmu skrętu (kolor zielony). Następnie moc zostaje przekazana do przekładni głównych (kolor pomarańczowy), po czym moc idzie do kół napędowych (kolor żółty).

Na powyższym rysunku, przy pomocy różowych strzałek, zaznaczyłem różowe półosie znajdujące się pomiędzy przekładnią kątową, a elementami pełniącymi rolę mechanizmy skrętu. Zrobiłem to nie bez powodu. Otóż owe półosie odgrywają istotną rolę w dzisiejszym wpisie. Jeśli przyjrzeć się powyższemu rysunkowi, stopy czołgistów kadłubowych znajdują się za owymi półosiami. Czyli następuje wzrost odległości pomiędzy kierowcą, a przednią krawędzią kadłuba. Oznacza to jednocześnie spadek odległości pomiędzy kierowcą, a przedziałem bojowym. Gdyby przesunąć kierowcę bardziej do przodu, można by zwiększyć odległość pomiędzy kierowcą, a przedziałem bojowym, a tym samym uzyskać w tym miejscu dodatkową przestrzeń. We wnętrzu owej dodatkowej przestrzeni zlokalizowanej pomiędzy stanowiskiem kierowcy, a przedziałem bojowym, można by coś umieścić- przykładowo, amunicję armatnią. Oczywiście, wszystko to co napisałem tyczy się również strzelca kadłubowego karabinu maszynowego.

Jest jednak pewien problem- jak przesunąć kierowcę bardziej do przodu, skoro tuż przed stopami kierowcy, znajdują się różowe półosie? Otóż jest na to rada! Można kierowcę umieścić w taki sposób, aby końcowa część jego nóg, przechodziła pod różową półosią. To samo da się zrobić ze strzelcem kadłubowego kaemu. Poniżej rysunek przedstawiający o co mi chodzi:

czolg_przod_nogi_2

Na powyższym rysunku czołg oznaczony cyfrą 1 ma stopy kierowcy i strzelca kaemu zlokalizowane za różowymi półosiami, natomiast w czołgu oznaczonym cyfrą 2 końcowa część nóg kierowcy i strzelca kadłubowego kemu przechodzi pod różowymi półosiami.

 

Jak widać na powyższym rysunku, umieszczenie kierowcy w taki sposób, aby końcowa część jego nóg przechodziła pod różową półosią, spowodowało wzrost odległości pomiędzy stanowiskiem kierowcy, a przedziałem bojowym. Tutaj jednak można zadać następujące pytanie- czy rozwiązanie zaprezentowane na powyższym rysunku, w czołgu numer 2, występowało w realnie istniejących czołgach? Otóż okazuje się że tak! W niemieckim czołgu średnim Panzer V Panther (Pantera) z okresu drugiej wojny światowej, stanowisko kierowcy było zlokalizowane mniej więcej tak, jak w czołgu numer 2, zaprezentowanym powyżej. Dodam że w Panterze, pomiędzy stanowiskiem kierowcy a przedziałem bojowym, znajdowały się umieszczone pionowo naboje armatnie. To samo tyczy się przestrzeni pomiędzy strzelcem kadłubowego kaemu a przedziałem bojowym (tam też była amunicja armatnia).

 

Oczywiście, rozwiązanie z końcową częścią nóg kierowcy przechodzącą pod półosią, nie musi służyć zwiększeniu odległości pomiędzy siedziskiem kierowcy, a przedziałem bojowym. Przynajmniej w niektórych czołgach z czołgowym napędem przednim można by takie rozwiązanie wykorzystać do skrócenia przedziału kierowania, a tym samym do zmniejszenia długości kadłuba. Krótszy kadłub oznacza mniejsze wymiary czołgu, a mniejsze wymiary czołgu to lepszy stosunek masy do poziomu ochrony pancernej. Ot, mniejszy czołg może być albo lepiej opancerzony (względem czołgu większego) przy tej samej masie wozu, albo mieć mniejszą masę przy tym samym poziomie ochrony pancernej.

 

 

 

Reklamy
Czołgowy napęd przedni- nogi kierowcy

Czołgowe mechanizmy skrętu i ich grupy- raz jeszcze

Dziś wpis na temat klasyfikacji czołgowych mechanizmów skrętu, a konkretnie na temat mechanizmów skrętu grupy pierwszej, drugiej i trzeciej. Co prawda napisałem już na ten temat wpis (link), ale uważam że nie zaszkodzi napisać coś jeszcze. Najpierw jednak wyjaśnię o co chodzi z owymi grupami mechanizmów skrętu (choć we wcześniejszym wpisie już to zrobiłem). Poniżej cytaty z pracy zatytułowanej Konstrukcja pojazdów gąsienicowych- układy przeniesienia mocy (autorzy: T. Koszycki, E. Kraszewski, J. Czerwonka, K. Malicki). Dodam że w poniższych cytatach zastosowano termin typ, zamiast terminu grupa. Czyli mamy nie grupę pierwszą mechanizmów skrętu, lecz typ pierwszy. Cytaty ilustrowane są rysunkami mojego autorstwa.

 

mech_skret_grupa_1

t y p   p i e r w s z y – są to mechanizmy, przy zastosowaniu których punkt zachowujący w czasie skrętu prędkość ruchu prostoliniowego (V0) znajduje się na wzdłużnej osi symetrii pojazdu. Do mechanizmów tego typu zalicza się wszystkie rodzaje mechanizmów różnicowych; prosty, podwójny, złożony i różnicowe mechanizmy skrętu o podwójnym doprowadzeniu mocy.

 

 

mech_skret_grupa_2

t y p   d r u g i – są to mechanizmy, przy zastosowaniu których punkt zachowujący w czasie skrętu prędkość ruchu prostoliniowego (V0) znajduje się na osi gąsienicy wyprzedzającej [wyprzedzająca, czyli ta która podczas skrętu porusza się z większą prędkością- przypis autora bloga]. Rozróżnia się następujące mechanizmy skrętu tego typu- sprzęgła boczne, jedno- i dwustopniowe planetarne mechanizmy skrętu oraz planetarne mechanizmy skrętu o podwójnym doprowadzeniu mocy.

 

mech_skret_grupa_3b

t y p   t r z e c i – są to mechanizmy, przy zastosowaniu których punkt zachowujący prędkość ruchu prostoliniowego przemieszcza się na zewnątrz osi gąsienicy wyprzedzającej. Taką właściwość posiadają pojazdy wyposażone w elektromechaniczny UPM [Układ Przeniesienia Mocy- przypis autora bloga] oraz hydromechaniczny z zastosowaniem oddzielnego napędu na gąsienice za pośrednictwem przekładni hydrostatycznych.

 

Na bazie powyższych cytatów można by wywnioskować, że mechanizmy skrętu grupy pierwszej są bezsprzecznie lepsze, od mechanizmów skrętu grupy drugiej, bowiem w przypadku mechanizmów skrętu grupy pierwszej, podczas wykonywania skrętu, środkowa część kadłuba pojazdu porusza się tak samo szybko, jak podczas jazdy na wprost. Czyli zasadniczo pojazd nie zwalnia podczas wykonywania skrętu. Natomiast w przypadku mechanizmów skrętu grupy drugiej, podczas wykonywania skrętu, środkowa część kadłuba pojazdu porusza się wolniej, względem jazdy na wprost. Czyli pojazd zwalnia podczas wykonywania skrętu. Jednak rzeczywistość jest bardziej skomplikowana. Otóż mechanizmy skrętu grupy drugiej mają pewną zaletę- w przypadku mechanizmów skrętu grupy drugiej, obciążenie silnika podczas wykonywania skrętu, zasadniczo jest mniejsze, niż w przypadku mechanizmów skrętu grupy pierwszej. Poniżej tabela z książki Teoria ruchu pojazdu gąsienicowego (autor: Zbigniew Burdziński):

 

mech_skretu_grupy_tab_m

Tabela odnosząca się obciążenia silnika podczas wykonywania skrętu w pojazdach z mechanizmem skrętu grupy pierwszej i w pojazdach z mechanizmem skrętu grupy drugiej. Jak widać, mechanizmy skrętu należące do grupy drugiej, wypadają lepiej.

 

Poniżej cytat z pracy Konstrukcja pojazdów gąsienicowych- układy przeniesienia mocy:

Jeśli chodzi o wybór typu mechanizmy skrętu, to lepsze właściwości zapewniają mechanizmy różnicowe [czyli mechanizmy grupy pierwszej- przypis autora bloga], gdyż większa jest prędkość kątowa skrętu, prowadzi to jednak do zwiększenia mocy potrzebnej silnika, w porównaniu z mechanizmami drugiego typu. Dlatego mechanizmy skrętu typu różnicowego należy stosować w pojazdach o dużej mocy jednostkowej silnika.

 

Nadmienię że w mojej ocenie, mechanizmy skrętu grupy drugiej, mogą charakteryzować się mniejszym obciążeniem silnika podczas wykonywania skrętu, ze względu na siłę bezwładności. To znaczy, w przypadku czołgu z mechanizmem skrętu grupy drugiej, jego kadłub podczas wykonywania skrętu porusza się wolniej, niż podczas jazdy na wprost. Czyli siła bezwładności kadłuba pomaga pokonać opory ruchu, jakie występują podczas wykonywania skrętu. Natomiast w przypadku czołgu z mechanizmem skrętu grupy pierwszej, środkowa część kadłuba wozu porusza się tak samo szybko podczas wykonywania skrętu, jak podczas jazdy na wprost. Czyli w wozie z mechanizmem skrętu należącym do grupy pierwszej kadłub nie zwalnia podczas wykonywania skrętu, stąd też siła bezwładności kadłuba nie pomaga pokonać oporów ruchu, występujących podczas wykonywania skrętu.

Dodam że sytuacja, w której siła bezwładności kadłuba, pomaga pokonać oporu ruchu, występujące podczas wykonywania skrętu, wydaje się tym bardziej pożądana, że w pojeździe gąsienicowym oporu ruchu są wyraźnie większe podczas wykonywania skrętu, niż podczas jazdy na wprost. Poniżej cytat z pracy Konstrukcja pojazdów gąsienicowych- układy przeniesienia mocy:

 

Skręt pojazdów gąsienicowych realizuje się drogą zmiany prędkości względnych gąsienic. Podczas skrętu wzdłużne osie gąsienic nie zmieniają swej równoległości wzajemnej i położenia względem kadłuba pojazdu, a zatem muszą się przemieszczać po podłoży w kierunku poprzecznym. Wskutek tego w czasie skrętu działają na pojazd oprócz oporów ruchu prostoliniowego znaczne opory skrętu. Szczególnie duże opory, kilkakrotnie przewyższające opory ruchu prostoliniowego, działają w czasie skrętu na darnistym podłożu, kiedy oprócz tarcia występują opory powodowane odkształcaniem, ścinaniem i nagarnianiem gruntu przez gąsienice.

 

Na koniec jeszcze pewna uwaga. Otóż mam wrażenie że w pojazdach gąsienicowych z mechanizmem skrętu należącym do grupy pierwszej, zazwyczaj mamy do czynienia z mechanizmem skrętu pod postacią jednego urządzenia, które to współpracuje z obiema gąsienicami. Przykładowo, w amerykańskim czołgu M4 Sherman mamy w sumie jedno urządzenie zwane w polskiej terminologii podwójnym mechanizmem różnicowym (w terminologii anglojęzycznej Controlled differential bądź też Cletrac differential), które współpracuje zarówno z lewą, jak i z prawą gąsienicą. Natomiast w pojazdach z mechanizmem skrętu należącym do grupy drugiej, mechanizm skrętu zazwyczaj występuje pod postacią dwóch oddzielnych urządzeń, z których jedno urządzenie współpracuje z lewą gąsienicą, a drugie z prawą gąsienicą. Przykładowo, radziecki czołg średni T-34 ma mechanizm skrętu bazujący na sprzęgłach bocznych. Czyli mamy jedno sprzęgło boczne odpowiedzialne za lewą gąsienicę i drugie sprzęgło boczne odpowiedzialne za prawą gąsienicę.

 

 

Czołgowe mechanizmy skrętu i ich grupy- raz jeszcze

Mechanizmy skrętu czołgów- grupa pierwsza, druga i trzecia

Dziś wpis tyczący się stosowanych w czołgach mechanizmów skrętu, a konkretnie jest to wpis o podziale mechanizmów skrętu na mechanizmy pierwszej, drugiej oraz trzeciej grupy. Kryterium podziału to położenie punktu zachowującego podczas wykonywania skrętu taką samą prędkość, jak podczas jazdy na wprost, przy założenie że podczas wykonywania skrętu obroty silnika i przełożenie w skrzyni biegów są takie same, jak podczas jazdy na wprost. Ale do rzeczy, najpierw rysunek przedstawiający mechanizm skrętu należący do grupy pierwszej:

mech_skret_grupa_1Mechanizm skrętu grupy pierwszej. Po lewej stronie rysunku- jazda na wprost. Po prawej- wykonywanie skrętu w prawo. Widać że podczas wykonywania skrętu jedna z gąsienic porusza się szybciej niż podczas jazdy na wprost (gąsienica wyprzedzająca), a druga porusza się wolniej niż podczas jazdy na wprost (gąsienica wyprzedzana). Środek kadłuba zachowuje taką samą prędkość jak podczas jazdy na wprost.

 

Mechanizmy skrętu grupy pierwszej to takie mechanizmy skrętu, w których podczas wykonywania skrętu gąsienica wyprzedzająca porusza się szybciej niż podczas jazdy na wprost, a gąsienica wyprzedzana wolniej niż podczas jazdy na wprost. Tym samym środek kadłuba zachowuje taką samą prędkość jak podczas jazdy na wprost. Do mechanizmów skrętu grupy pierwszej należą zasadniczo mechanizmy skrętu bazujące na mechanizmie różnicowym. Do mechanizmów skrętu grupy pierwszej należał przykładowo mechanizm skrętu polskiej tankietki TKS- w pojeździe tym zastosowano pojedynczy mechanizm różnicowy, czyli praktycznie takie samo urządzenie jak to stosowane w samochodowych mostach napędowych (skręcanie odbywało się poprzez przyhamowanie jednej lub drugiej gąsienicy). Również mechanizm skrętu amerykańskiego czołgu średniego M4 Sherman należał do pierwszej grupy mechanizmów skrętu, przy czym w Shermanie zastosowano bardziej zaawansowane urządzenie, zwane z angielska Controlled Differential.

 

Teraz rysunek przedstawiający mechanizm skrętu należący do grupy drugiej:mech_skret_grupa_2Mechanizm skrętu grupy drugiej. Po lewej stronie rysunku- jazda na wprost. Po prawej- wykonywanie skrętu w prawo. Podczas wykonywania skrętu jedna z gąsienic porusza się z taką samą prędkością jak podczas jazdy na wprost (gąsienica wyprzedzająca), a druga porusza się wolniej niż podczas jazdy na wprost (gąsienica wyprzedzana). Środek kadłuba ma tym samym mniejszą prędkość niż podczas jazdy na wprost.

 

W mechanizmach skrętu grupy drugiej gąsienica wyprzedzająca porusza się z taką samą prędkością jak podczas jazdy na wprost, a gąsienica wyprzedzana z prędkością mniejszą niż podczas jazdy na wprost. Tym samym środek kadłuba ma prędkość mniejszą niż podczas jazdy na wprost. Do mechanizmów skrętu grupy drugiej należą zasadniczo mechanizmy skrętu bazujące na sprzęgłach bocznych oraz mechanizmy skrętu bazujące na przekładniach planetarnych. Przykładowo, do mechanizmów skrętu grupy drugiej należał mechanizm skrętu radzieckiego czołgu średniego T-34, przy czym w wozie tym zastosowano sprzęgła boczne. Do mechanizmów skrętu grupy drugiej należały też mechanizmy skrętu niemieckich czołgów Panzer III i Panzer IV- oba wozy miały jednostopniowy planetarny mechanizm skrętu. Inny przykład mechanizmu skrętu należącego do grupy drugiej to mechanizm skrętu czołgów serii T-54/T-55. Czołgi serii T-54/T-55 mają dwustopniowy planetarny mechanizm skrętu.

Przy czym wydawać by się mogło że skoro w mechanizmach skrętu należących do grupy drugiej, podczas wykonywania skrętu, środkowa część kadłuba porusza się wolniej niż podczas jazdy na wprost, to tego typu mechanizmy skrętu należało by uznać za gorsze od mechanizmów skrętu należących do grupy pierwszej (tam środek kadłuba ma podczas wykonywania skrętu taką samą prędkość jak podczas jazdy na wprost). Ot, można w mojej ocenie przyjąć uproszczenie, zgodnie z którym przy mechanizmie skrętu należącym do grupy drugiej, czołg zwalnia podczas wykonywania skrętu, a przy mechanizmie skrętu należącym do grupy pierwszej, czołg nie zwalnia podczas wykonywania skrętu.

Jednak sprawa jest bardziej skomplikowana. Otóż jeśli idzie o obciążenie silnika podczas wykonywania skrętu, lepiej wypadają mechanizmy skrętu należące do grupy drugiej, niż mechanizmy należące do grupy pierwszej (mniejsze obciążenie silnika podczas wykonywania skrętu w mechanizmach skrętu grupy drugiej niż w mechanizmach skrętu grupy pierwszej). Czemu tak jest? Cóż, może po prostu idzie tutaj o siłę bezwładności. Otóż w mechanizmach skrętu grupy drugiej, podczas wykonywania skrętu, zasadniczo kadłub porusza się wolniej, niż podczas jazdy na wprost. W mojej ocenie, skoro następuje spadek prędkości kadłuba wraz z rozpoczęciem wykonywania skrętu, to pojawia się sytuacja, w której siła bezwładności kadłuba ciągnie kadłub w kierunku jego ruchu, a tym samym siła bezwładności pomaga pokonywać opory ruchu. W mechanizmach skrętu należących do grupy pierwszej, zasadniczo kadłub (a konkretnie jego środek masy) porusza się z taką samą prędkością, jak podczas jazdy na wprost. Tym samym siła bezwładności kadłuba nie pomaga pokonywać oporów ruchu, co być może wpływa negatywnie na obciążenie silnika podczas wykonywania skrętu. Tym samym daleki był bym od tezy że mechanizmy skrętu należące do grupy drugiej są zasadniczo gorsze od mechanizmów skrętu należących do grupy pierwszej. Wręcz nie zdziwił bym się gdyby niektórzy konstruktorzy preferowali mechanizmy skrętu należące do grupy drugiej.

mech_skretu_grupy_tab_m

Tabela dotycząca obciążenia silnika podczas wykonywania skrętu w mechanizmach skrętu grupy pierwszej i grupy drugiej. Jak widać, mechanizmy skrętu należące do grupy drugiej wypadają lepiej. Tabela pochodzi z książki „Teoria ruchu pojazdu gąsienicowego”. Autor książki to Zbigniew Burdziński.

 

Omówiłem grupę pierwszą mechanizmów skrętu, omówiłem również grupę drugą mechanizmów skrętu. Czas na grupę trzecią mechanizmów skrętu. Poniżej rysunek przedstawiający mechanizm skrętu należący do grupy trzeciej:

mech_skret_grupa_3bMechanizm skrętu grupy trzeciej. Po lewej stronie rysunku- jazda na wprost. Po prawej- wykonywanie skrętu w prawo. Podczas wykonywania skrętu obie gąsienice poruszają się z prędkością mniejszą niż podczas jazdy na wprost. Środek kadłuba ma tym samym mniejszą prędkość niż podczas jazdy na wprost. Punkt zachowujący podczas wykonywania skrętu taką samą prędkość, jak podczas jazdy na wprost, znajduje się na zewnątrz czołgu.

 

Jeśli idzie o trzecią grupę mechanizmów skrętu, w przypadku mechanizmów tej grupy, podczas wykonywania skrętu, obie gąsienice mają mniejszą prędkość niż podczas jazdy na wprost (zarówno gąsienica wyprzedzana, jak i wyprzedzająca). Stąd też środek kadłuba ma podczas wykonywania skrętu mniejszą prędkość niż podczas jazdy na wprost (cały kadłub w sumie też). Tutaj dochodzi do dość ciekawej sytuacji- otóż w przypadku mechanizmów skrętu grupy trzeciej, punkt który podczas wykonywania skrętu zachowuje taką samą prędkość, jak podczas jazdy na wprost, znajduje się poza czołgiem (przy czym ów punkt znajduje się bliżej gąsienicy wyprzedzającej, niż wyprzedzanej). Zgodnie z książką Konstrukcja i obliczanie szybkobieżnych pojazdów gąsienicowych (autor: Antoni Wiktor Chodkowski) do mechanizmów skrętu grupy trzeciej należą elektromechaniczny oraz hydromechaniczny UPM (układ przeniesienia napędu- przypis autora bloga) z zastosowaniem oddzielnego napędu na gąsienice za pośrednictwem przekładni hydrostatycznych.

 

 

 

Mechanizmy skrętu czołgów- grupa pierwsza, druga i trzecia

Hamowanie w Stalinie

Dziś kolejny wpis o radzieckich czołgach ciężkich. Wpis dotyczyć będzie interfejsu kierowcy tego typu wozów. Otóż jakiś czas temu, przyglądając się rysunkowi przedstawiającemu stanowisko kierowcy czołgu IS-2 (Iosif Stalin), doszedłem do wniosku że czegoś tu brakuje. Tym brakującym czymś był pedał hamulca. Oczywiście, brak pedału hamulca nie oznacza że Stalin nie miał hamulców. Hamulce były, jednak aby wyhamować czołg, kierowca musiał użyć dźwigni mechanizmu skrętu. Przy czym podczas hamowania Stalinem przy użyciu dźwigni mechanizmu skrętu, następowało wysprzęglenie (dokonywana przez dwustopniowy planetarny mechanizm skrętu), nawet jeśli kierowca nie wciskał podczas hamowania pedału obsługującego sprzęgło główne. Wychodzi więc na to że podczas jazdy Stalinem nie dało się hamować bez wysprzęglania. Poniżej rysunek przedstawiający stanowisko kierowcy w czołgu IS-2. Rysunek pochodzi z pracy Czołgi. Podręcznik mechanika-kierowcy III-ej klasy. Kolorem żółtym zaznaczyłem pedał sprzęgła głównego, a kolorem niebieskim pedał gazu.

IS-2_kierowca_m

Tutaj wzmianka na temat mechanizmu skrętu zastosowanego w czołgu IS-2. Wóz ten miał dwustopniowy planetarny mechanizm skrętu. Do skręcania i hamowania wozem kierowania kierowca używał dwóch dźwigni. Lewa dźwignia obsługiwałą lewą gąsienicę, a prawa dźwignia odpowiadała za gąsienicę prawą. Przy dźwigni w pierwszym (przednim) położeniu, gąsienica poruszała się ze zwykłą prędkością. Przestawienie dźwigni w położenie drugie (środkowe) powodowało zmniejszoną prędkość gąsienicy. Zmniejszenie prędkości gąsienicy odbywało się dzięki zwiększeniu przełożenia, a za wzrost przełożenia odpowiadała przekładnia planetarna. Przy dźwigni mechanizmu skrętu w położeniu drugim moc nadal dostarczana była na gąsienicę. Było jeszcze trzecie (tylne) położenie dźwigni mechanizmu skrętu. Przy dźwigni w położeniu trzecim następowało wysprzęglenie i dodatkowo przyhamowanie gąsienicy. Wysprzęglenie odbywało się dzięki działaniu przekładni planetarnej. Przy dźwigni w położeni trzecim moc nie była dostarczana na gąsienicę.

Dodam że brak pedału hamulca w czołgu to nie ewenement. Przykładowo, w amerykańskim czołgu Sherman również pedału hamulca nie było. Jest jednak pewne ale. Otóż Sherman miał mechanizm skrętu bazujący na mechanizmie różnicowym (zgodnie z polską terminologią Sherman miał podwójny mechanizm różnicowy, zgodnie z anglojęzyczną termnologią taki mechanizm skrętu to controlled differential). Przy tego typu mechanizmie skrętu, podczas hamowania czołgu przy pomocy dźwigni mechanizmu skrętu, wysprzęglenie nie następowało (zakładając że kierowca podczas hamowania nie wcisnął pedału obsługującego sprzęgło główne). Kierując Shermanem można więc było hamować bez wysprzęglania, mimo braku pedału hamulca.

Wracając do radzieckich czołgów ciężkich, brak możliwości hamowania bez wysprzęglania w czołgu IS-2 zdziwił mnie. Postanowiłem więc sprawdzić jak to było w innych popularnych radzieckich czołgach ciężkich. Najpierw postanowiłem sprawdzić jak to było w czołgu KW-1, wozie starszym od Stalina. KW-1 miał inny mechanizm skrętu niż IS-2 (KW-1 miał mechanizm skręt bazujący na sprzęgłach bocznych), ale również w KW-1 hamowanie czołgu przy pomocy dźwigni mechanizmu skrętu oznaczało obligatoryjne wysprzęglenie (dokonywane przez sprzęgła boczne), nawet jeśli kierowca podczas hamowania nie wcisnął pedału sprzęgła głównego. Aby zobaczyć jak wyglądał interfejs kierowcy czołgu KW-1, postanowiłem zajrzeć do brytyjskiego raportu dotyczącego tego typu wozu. Raport ten powstał w okresie drugiej wojny światowej na bazie czołgu KW-1 dostarczonego Brytyjczykom przez Sowietów (wóz został dostarczony do testów). Tytuł raportu to Preliminary report No1/0. Russian KV/1. W raporcie nie znalazłem co prawda rysunku bądź zdjęcia na którym było by dokładnie widać stanowisko kierowcy czołgu KW-1, ale znalazłem taką oto wzmiankę:

KW-1_kierowca_brytyjski_raport

Zgodnie z tą wzmianką, KW-1 miał po lewej pedał sprzęgła (głównego), po prawej pedał gazu, a jednocześnie charakteryzował się brakiem pedału hamulca. Czyli w KW-1, tak jak w czołgu IS-2, nie dało się hamować bez wysprzęglania.

Skoro przyjrzałem się czołgowi KW-1, postanowiłem sprawdzić jak wyglądał interfejs kierowcy w radzieckich czołgach ciężkich opracowanych po czołgu IS-2. Poniżej dwa rysunki, pierwszy przedstawia stanowisko kierowcy w czołgu IS-3, drugi w czołgu T-10. Oba wozy miały dwustopniowy planetarny mechanizm skrętu, tym samym w obu wozach hamowanie przy pomocy dźwigni mechanizmu skrętu oznaczało wysprzęglenie dokonywane przy pomocy przekładni planetarnych mechanizmu skrętu (sytuacja taka jak w czołgu IS-2).

IS-3_kierowca_mStanowisko kierowcy czołgu IS-3.

 

T-10_kierowca_m2Stanowisko kierowcy czołgu T-10.

 

Na powyższych rysunkach kolorem żółtym zaznaczyłem pedał sprzęgła głównego, a kolorem niebieskim pedał gazu. Jak widać na powyższych rysunkach, w czołgu IS-3 i w czołgu T-10 nie zastosowano pedału hamulca. Tym samym w obu wozach nie było możliwe hamowanie bez wysprzęglania. Lecz teraz spójrzmy na stanowisko kierowcy czołgu T-10M, wóz ten to zmodernizowana wersja czołgu T-10 (M oznacza Modernizirowanyj):

T-10M_kierowca_m2Kolorem żółtym zaznaczyłem pedał sprzęgła głównego, kolorem zielonym pedał hamulca, a kolorem niebieskim pedał gazu. Czołg T-10M miał więc pedał hamulca. Tym samym w wozie tym można było hamować bez wysprzęglania.

Reasumując, w wielu radzieckich czołgach ciężkich nie dało się hamować bez wysprzęglania ze względu na brak pedału hamulca, choć był też przynajmniej jeden radziecki czołg ciężki w którym hamowanie bez wysprzęglania było możliwe (T-10M). To że w wielu radzieckich czołgach ciężkich nie dało się hamować bez wysprzęglania jest w mojej ocenie zastanawiające, bowiem radzieckie czołgi średnie pedał hamulca miały, a tym samym można w nich było hamować bez wysprzęglania. Pedał hamulca zastosowano zarówno w tych radzieckich czołgach średnich które miały mechanizm skrętu bazujący na sprzęgłach bocznych (T-34, T-44), jak i w tych radzieckich czołgach średnich które miały dwustopniowy planetarny mechanizm skrętu (T-54/T-55, T-62). Czemu w radzieckich czołgach średnich był pedał hamulca umożliwiający hamowanie bez wysprzęglania, a w wielu radzieckich czołgach ciężkich nie było ani pedału hamulca, ani możliwości hamowania bez wysprzęglania? Tego nie wiem. Być może miało to związek z tym że czołgi ciężkie miały większą masę od czołgów średnich… a być może nie. W końcu korelacja nie musi oznaczać związku przyczonowo-skutkowego. Jako zakończenie wpisu zamieszczam dwa rysunki. Pierwszy przedstawia stanowisko kierowcy w czołgu średnim T-34-85M, drugi przedstawia stanowisko kierowcy w czołgu średnim T-55. Kolorem żółtym zaznaczyłem pedał sprzęgła głównego, kolorem zielonym pedał hamulca, a kolorem niebieskim pedał gazu.

 

T-34-85M_kierowca_mStanowisko kierowcy czołgu T-34-85M.

 

T-55_kierowca_m2Stanowisko kierowcy czołgu T-55.

Hamowanie w Stalinie

Pancerna tajemnica Stalina

IS-2_kola_tyl_mCzołg ciężki IS-2. Kolorem żółtym zaznaczono pierwsze cztery lewe koła jezdne, a kolorem pomarańczowym ostatnie dwa lewe koła jezdne. Czerwoną strzałką zaznaczono odstęp pomiędzy piątym i szóstym kołem jezdnym, mniejszy niż inne odstępy pomiędzy kołami jezdnymi.

 

Od jakiegoś czasu zastanawiałem się czemu w radzieckim czołgu ciężkim IS-2 (Iosif Stalin) odstęp pomiędzy dwoma ostatnimi kołami jezdnymi (piąte i szóste) był mniejszy niż inne odstępy pomiędzy kołami jezdnymi. Postanowiłem więc spojrzeć na przekroje tego czołgu. Po spojrzeniu na przekroje doszedłem do wniosku że ów mniejszy odstęp pomiędzy dwoma ostatnimi kołami jezdnymi mógł mieć związek z zastosowaniem zawieszenia bazującego na drążkach skrętnych. Otóż gdyby cofnąć ostatnie drążki skrętne (drążek odpowiedzialny za ostatnie koło jezdne znajdujące się po lewej stronie pojazdu i drążek odpowiedzialny za ostatnie koło jezdne umieszczone po prawej stronie wozu), aby powiększyć odstęp pomiędzy przedostatnim a ostatnim kołem jezdnym, to wtedy ostatnie drążki skrętne zaczęły by kolidować z wentylatorem układu chłodzenia silnika. Ów wentylator umieszczony był pomiędzy silnikiem a skrzynią biegów. Poniżej rysunek przedstawiający przedział napędowy czołgu Iosif Stalin (co prawda jest to rysunek czołgu IS-1, a nie IS-2, ale oba wozy miały zbliżony układ napędowy):

IS-1_zawiesz_went_tyl

Przedział napędowy czołgu IS-1. Kolorem pomarańczowym zaznaczono drążki skrętne odpowiedzialne za przedostatnie koło jezdne (piąte po lewej stronie pojazdu i piąte po prawej stronie wozu), kolorem czerwonym zaznaczono drążki skrętne odpowiedzialne za ostatnie koło jezdne (szóste po lewej stronie pojazdu i szóste po prawej stronie wozu), a kolorem niebieskim zaznaczono wentylator układu chłodzenia wraz z osłoną wentylatora.

 

Oczywiście, gdyby bardzo chcieć, to drążki skrętne odpowiedzialne za ostatnie koło jezdne, można by przesunąć do tyłu. Aby to zrobić, można by przykładowo zmniejszyć średnicę wentylatora układu chłodzenia, aby ostatnie drążki skrętne zmieściły się pod wentylatorem. Można by też podwyższyć przedział napędowy, dzięki czemu możliwe stało by się umieszczenie wentylatora wyżej, a to umożliwiło by zmieszczenie ostatnich drążków skrętnych pod wentylatorem, bez zmniejszania średnicy wentylatora. Można by również wydłużyć przedział napędowy, dzięki czemu możliwe stało by się cofnięcie wentylatora, a to umożliwiło by cofnięcie ostatnich drążków skrętnych, bez wystąpienia kolizji drążków z wentylatorem. Wszystkie te rozwiązania miały by jednak wady. Zmniejszenie średnicy wentylatora oznaczało by najpewniej słabsze chłodzenie silnika, natomiast podwyższenie bądź wydłużenie przedziału napędowego oznaczało by większe wymiary wozu, a tym samym wzrost masy pojazdu. Radzieccy konstruktorzy uznali najpewniej że umieszczenie ostatnich drążków skrętnych w sposób powodujący mniejszy odstęp pomiędzy dwoma ostatnimi kołami jezdnymi (piątym i szóstym), względem innych ostępów pomiędzy kołami jezdnymi, to akceptowalny kompromis. Poniżej rysunki przedstawiające układ chłodzenie czołgu IS-2. Na jednym z rysunków kolorem niebieskim zaznaczono wentylator układu chłodzenia wraz z osłoną wentylatora. Rysunki pochodzą z pracy zatytułowanej Czołgi. Podręcznik mechanika-kierowcy III-ej klasy. Podręcznik ten wydany został w 1945 roku.

IS_chlodz_m

 

IS_went_siln_m

 

IS_chlodnice_m

 

Pancerna tajemnica Stalina

Silnik czołgowy umieszczony poprzecznie

Dzisiejszy wpis poświęcony będzie poprzecznemu umieszczeniu silnika czołgowego. Jednak zanim przejdę do czołgowych silników umieszczonych poprzecznie, zacznę od silników czołgowych umieszczonych wzdłużnie. Otóż jeszcze w okresie drugiej wojny światowej praktycznie wszystkie czołgi miały silnik umieszczony wzdłużnie względem kadłuba. Jednocześnie silnik umieszczony wzdłużnie, zakładając dość dużą długość silnika, zajmuje więcej miejsca wzdłuż od silnika umieszczonego poprzecznie. Tym samym silnik umieszczony wzdłużnie może przyczynić się do wzrostu długości przedziału napędowego.

Tutaj warto zauważyć że już w okresie drugiej wojny światowej wiele czołgów miało zblokowany układ napędowy umieszczony z tyłu (umieszczony z tyłu zarówno silnik, jak i skrzynia biegów, mechanizm skrętu oraz koła napędowe). Zblokowany układ napędowy to cecha która dodatkowo powoduje wydłużenie przedziału napędowego (względem wozów gdzie silnik znajduje się z tyłu, a skrzynia biegów, mechanizm skrętu i koła napędowe z przodu). Stąd też w okresie drugiej wojny światowej, te wozy które miały zblokowany układ napędowy, charakteryzowały się często proporcjami gdzie połowę długości kadłuba zajmował układ napędowy, a połowę przedział załogi (przedział załogi czyli bojowy i kierowania). Takie proporcje powodowały coś o określić można mianem przesunięcia wieży do przodu. Pisząc o przesunięciu wieży do przodu mam na myśli sytuację, gdzie patrząc na wóz od boku bądź od góry, widać że wieża nie jest umieszczona na środku kadłuba, lecz znajduje się bliżej przodu kadłuba niż jego tyłu. Z kolei takie umieszczenie wieży może powodować przesunięcie środka ciężkości wozu do przodu (cecha raczej niekorzystna). Poniżej rysunek przedstawiający czołg z umieszczonym w tylnej części wozu zblokowanym układem napędowym w wydaniu „silnik umieszczony wzdłużnie, skrzynia biegów umieszczona poprzecznie”. Element oznaczony cyfrą 1 to silnik, cyfra 2 oznacza skrzynię biegów, elementy mechanizmu skrętu oznaczono cyfrą 3, a zbiorniki paliwa cyfrą 4.

silnik_czolg_wzdluznie_1

Na powyższym rysunku widać że wieża wozu nie jest umieszczona centralnie, lecz jest przesunięta ku przedniej części kadłuba. Widać też że na lewo i na prawo od silnika znajdują się zbiorniki paliwa.

Silnik umieszczony wzdłużnie nie musi oznaczać wieży przesuniętej ku przodowi kadłuba. Przykładowo, w okresie drugiej wojny światowej te wozy które miały silnik umieszczony wzdłużnie w tylnej części kadłuba, a układ przeniesienia napędu (skrzynia biegów, mechanizm skrętu, koła napędowe) umieszczony z przodu, zazwyczaj miały wieżę umieszczoną centralnie. Jednak układ przeniesienia napędu znajdujący się z przodu kadłuba ma swoje wady. Przykładowo, rozwiązanie takie może utrudniać dostęp do elementów układu przeniesienia napędu. Dobrze zauważyć że tuż po zakończeniu drugiej wojny światowej czołgi charakteryzujące się czołgowym napędem przednim (silnik z tyłu, układ przeniesienia napędu z przodu) prawie całkowicie wymarły. Natomiast czołgi które mają umieszczony z tyłu zblokowany układ napędowy z silnikiem umieszczonym wzdłużnie (układ sprzyjający przesunięciu wieży do przodu) istnieją do dzisiaj.

Można więc według mnie założyć że to dobrze jeśli czołg ma zblokowany układ napędowy umieszczony z tyłu, skoro obecnie prawie wszystkie czołgi mają takie rozwiązanie. Jednak dobrze też aby przedział napędowy charakteryzował się małą długością. Mała długość przedziału napędowego to mniejszy wóz, a tym samym wóz charakteryzujący się lepszym stosunkiem masy do poziomu ochrony pancernej. Dodatkowo mała długość przedziału napędowego sprzyja centralnemu umieszczeniu wieży. Jak jednak zrobić krótki przedział napędowy, skoro w czołgach powszechnie stosowane są silniki u układzie V12, tak więc silniki charakteryzujące się dużą długością? Można oczywiście umieścić skrzynię biegów poprzecznie, skrzynia biegów umieszczona poprzecznie to rozwiązanie bardzo popularne w tych czołgach, które mają umieszczony z tyłu zblokowany układ napędowy i jednocześnie silnik umieszczony wzdłużnie, jednak przy takim układzie (zblokowany układ napędowy z tyłu, silnik wzdłużnie, skrzynia biegów poprzecznie) nadal duża długość silnika będzie powodować sporą długość przedziału napędowego. Jest jednak rozwiązanie, otóż można umieścić poprzecznie względem kadłuba nie tylko skrzynię biegów, ale również silnik. Poniżej rysunek przedstawiający czołg z takim rozwiązaniem (rysunek oznaczony tak samo jak rysunek wcześniejszy):

silnik_czolg_poprzecznie_1

Na powyższym rysunku widać że poprzeczne umieszczenie silnika spowodowało zmiany dotyczące rozmieszczenia zbiorników paliwa. Na wcześniejszym rysunku widać było że zbiorniki umieszczono w przedziale napędowym, na lewo i na prawo od silnika (przy bocznych ścianach kadłuba). Takie rozwiązanie jest bardzo popularne w czołgach z silnikiem umieszczonym wzdłużnie. Jednak przy silniku umieszczonym poprzecznie, przy bocznych ścianach przedziału napędowego, może być zbyt mało miejsca aby umieścić tam zbiorniki paliwa. Stąd też tym razem zbiornik paliwa umieszczono w przedziale napędowym, pomiędzy silnikiem a grodzią oddzielającą przedział napędowy od przedziału bojowego. Jednak tak umieszczony zbiornik paliwa ma pewną istotną wadę. Otóż główna zaleta poprzecznego umieszczenia silnika to możliwość skrócenia przedziału napędowego, a zbiornik paliwa umieszczony pomiędzy silnikiem a grodzią powoduje wydłużenie przedziału napędowego, tym samym zysk z poprzecznego umieszczenia silnika nie jest tak duży jak mógł by być. Stąd też aby zysk z poprzecznego umieszczenia silnika był jak największy, można zupełnie usunąć zbiornik paliwa z przedziału napędowego. Poniżej rysunek przedstawiający taki wóz:

silnik_czolg_poprzecznie_2

Sytuacja zbliżona do poprzedniej, jednak tym razem pomiędzy silnikiem a grodzią oddzielającą przedział napędowy od bojowego, nie ma zbiornika paliwa. Zbiornik paliwa umieszczono w przedniej części kadłuba, obok kierowcy, co spowodowało konieczność usunięcia czołgisty siedzącego obok kierowcy (czołgista ten pełnił w wielu czołgach z okresu drugiej wojny światowej funkcję strzelca kadłubowego kaemu i radiotelegrafisty). Konieczność usunięcia strzelca kadłubowego kaemu/radiotelegrafisty nie jest jednak w mojej ocenie istotnym problemem, biorąc pod uwagę że tuż po zakończeniu drugiej wojny światowej stanowisko strzelca kadłubowego kaemu/radiotelegrafisty prawie całkowicie w czołgach wymarło, co wskazuje że stanowisko to nie było zbyt przydatne. Zbliżony układ konstrukcyjny do narysowanego powyżej mają radzieckie zimnowojenne czołgi średnie T-55 i T-62.

Tutaj dodam że poprzeczne umieszczenie silnika umożliwia skrócenie przedziału napędowego, ale przy założeniu że silnik jest dość długi. Przy bardzo krótkim silniku (dajmy na to, przy silniku gwiazdowym) poprzeczne umieszczenie silnika raczej nie spowoduje skrócenia przedziału napędowego. Mam jednocześnie wrażenie że aby poprzeczne umieszczenie silnika miało sens, silnik nie może też być zbyt długi, bowiem przy bardzo długim silniku umieszczonym poprzecznie, najpewniej nadmiernie wzrosła szerokość kadłuba.

Silnik umieszczony poprzecznie to cecha kojarzona chyba najbardziej z radzieckimi czołgami średnimi i podstawowymi z okresu zimnej wojny. Już opracowany pod koniec drugiej wojny światowej radziecki czołg średni T-44, następca czołgu średniego T-34, miał silnik umieszczony poprzecznie. Zastosowanie silnika umieszczonego poprzecznie umożliwiło skrócenie przedziału napędowego, stąd też T-44 miał kadłub o zbliżonej długości do kadłuba czołgu T-34, mimo tego że T-44 charakteryzował się przedziałem kierowania dłuższym od tego zastosowanego w T-34. Dzięki temu w T-44 właz kierowcy umieszczono na dachu kadłuba, podczas gdy w T-34 właz kierowcy znajdował się na przedniej górnej płycie pancernej. Jednocześnie o ile w T-34 wieża była wyraźnie przesunięta ku przedniej części kadłuba, to w T-44 wieża była umieszczona praktycznie na środku kadłuba (jak już wspomniałem, T-44 miał względem T-34 krótszy przedział napędowy i dłuższy przedział kierowania, co zmieniło proporcje wozu). Inne radzieckie i rosyjskie czołgi z silnikiem umieszczonym poprzecznie to T-54/T-55, T-62, T-64, T-72, T-80 i T-90. Dodam że przed czołgiem T-44 istniały pojazdy pancerne z silnikiem umieszczonym poprzecznie. Pojazdy te to włoski czołg lekki Fiat 3000 z lat 20. i włoska tankietka L3 z lat 30. Przy czym oba włoskie wozy były jedynie kroplą w morzu pojazdów pancernych z okresu międzywojennego (a jeśli idzie o pojazdy pancerne z okresu międzywojennego, zdecydowana większość z nich miała silnik umieszczony wzdłużnie).

Silnik czołgowy umieszczony poprzecznie

Nadbieg i przełożenie bezpośrednie w czołgu

Wpis ten dotyczy nadbiegu i przełożenia bezpośredniego w czołgowej skrzyni biegów. Pisząc o nadbiegu w skrzyni biegów mam na myśli przełożenie które przykładowo w samochodzie osobowym o klasycznym układzie konstrukcyjnym (silnik i skrzynia biegów z przodu, koła napędowe z tyłu) powoduje że wał napędowy obraca się z większą prędkością od wału korbowego silnika, a jednocześnie gdzie przełożenie takie realizowane jest dzięki odpowiedniej budowie właściwej skrzyni biegów, a nie dzięki oddzielnej przekładni przyspieszającej (multipliktor).

Ale do rzeczy, jeśli jakiś pojazd ma skrzynię biegów z trzema wałkami (wałek sprzęgłowy, pośredni i główny), gdzie wałek sprzęgłowy znajduje się naprzeciwko głównego, to często jedno z przełożeń realizowane jest nie dzięki współpracy kół zębatych skrzyni biegów, a dzięki połączeniu wałka sprzęgłowego z głównym (przełożenie bezpośrednie). Jeśli dane przełożenie realizowane jest dzięki bezpośredniemu połączeniu wałka sprzęgłowego z głównym, to wtedy podczas używania tego przełożenia występują mniejsze straty mocy oraz następuje mniejsze zużycie kół zębatych skrzyni biegów (względem użycia tych przełożeń w których moc przenoszona jest poprzez koła zębate skrzyni biegów). Choć dodać należy że w zwykłej ręcznej mechanicznej skrzyni biegów straty mocy są małe nawet podczas używania tych przełożeń przy których moc przenoszona jest poprzez koła zębate skrzyni biegów.  Jednocześnie skoro przy przełożeniu realizowanym poprzez połączenie wałka sprzęgłowego z głównym straty mocy oraz zużycie kół zębatych są najmniejsze, to dobrze aby przełożenie to było tym przełożeniem które jest wykorzystywane najczęściej. Stąd też w samochodach osobowych o klasycznym układzie konstrukcyjnym (silnik z przodu, napęd na tył) jeszcze w latach 70. powszechne były czterobiegowe ręczne skrzynie biegów w których najwyższy bieg realizowany był poprzez połączenie wałka sprzęgłowego z głównym. Oznaczało to brak nadbiegu, zakładając że w pojeździe nie użyto dodatkowej przekładni przyspieszającej (multiplikatora). Takie rozwiązanie (czterobiegowa skrzynia ręczna, najwyższy bieg realizowany poprzez połączenie wałka sprzęgłowego z głównym, brak dodatkowej przekładni przyspieszającej) występowało między innymi w Fordzie Taunusie TC3, który produkowany był do 1982 roku. Stosując takie rozwiązanie zakładano że samochód osobowy najczęściej porusza się przy włączonym najwyższym biegu. Inaczej sprawa wyglądała w przypadku czołgów. Czołg znacznie częściej od samochodu osobowego porusza się w terenie, a podczas jazdy w terenie raczej rzadko korzysta się z najwyższego biegu.  Stąd też w czołgach przełożenie realizowane poprzez bezpośrednie połączenie wałka sprzęgłowego z głównym odpowiadało nie biegowi najwyższemu, lecz przednajwyższemu. Ot, zakładając że ręczna czterobiegowa czołgowa skrzynia biegów miała przełożenie bezpośrednie, to wtedy bieg trzeci był biegiem przy użyciu którego wykorzystywano bezpośrednie połączenie wałka sprzęgłowego z głównym, a bieg czwarty był nadbiegiem.

Pisząc ten wpis bazuję na książce Czołg. Książka ta została wydana w Polsce w 1957 roku, a jej oryginalna wersja została wydana w ZSRR w 1954 roku pod tytułem Tank (Танк). Autorzy książki to A. Antonow, B. Artamanow, B. Korobkow i E. Magidowicz. Książka ta dotyczy w dużej mierze rozwiązań technicznych stosowanych w radzieckich czołgach z okresu drugiej wojny światowej, można więc założyć że już w okresie drugiej wojny światowej (a pewnie i wcześniej) nadbieg występował powszechnie w czołgowych skrzyniach biegów.

Nadbieg i przełożenie bezpośrednie w czołgu