Osłabiacze podrzutu

Oto kolejny wpis o urządzeniach wylotowych. Tym razem dotyczyć on będzie osłabiaczy podrzutu, zwanych również kompensatorami podrzutu. Ale do rzeczy. Otóż jeśli mamy broń strzelecką w układzie klasycznym (punkt podparcia kolby ulokowany poniżej osi lufy, a tym samym brak układu liniowego), to wtedy, w wyniku strzału, nastąpi ruch końca lufy do góry, czyli tak zwany podrzut. Podrzut to zjawisko wpływające negatywnie na celność podczas strzelania seriami. Tym samym jeśli mamy do czynienia z samoczynną (strzelającą seriami) bronią strzelecką, skonstruowaną w układzie klasycznym, to dobrze aby na końcu lufy znajdowało się urządzenie wylotowe, kierujące część gazów prochowych do góry, po oddaniu strzału. Tego typu urządzenie wylotowe to właśnie osłabiacz podrzutu. Biorąc pod uwagę że osłabiacze podrzutu zazwyczaj działają poprzez skierowanie części gazów prochowych do góry, można według mnie przyjąć że pod względem zasady działania przypominają reakcyjne hamulce wylotowe.

Poniżej rysunki przedstawiające dwa różne modele osłabiacza podrzutu. Pierwszy model to osłabiacz podrzutu zbliżony do tego zastosowanego w radzieckim karabinku automatycznym AKM (zmodernizowana wersja karabinka Kałasznikowa), drugi model to osłabiacz podrzutu zbliżony do tego zastosowanego w radzieckim pistolecie maszynowym PPSz-41 (Pepesza).

 

Oslabiacz_AKM_z

Na powyższym rysunku widnieje osłabiacz podrzutu zbliżony do tego który zobaczyć można na końcu lufy karabinka AKM i jego odmian. Niebieska strzałka przedstawia gazy prochowe kierowane do góry przez ów osłabiacz. Osłabiacz podrzutu karabinka AKM czasami określany jest mianem łyżka. Choć na powyższym rysunku tego nie widać, osłabiacz podrzutu karabinka AKM zamocowany jest na lufie tak, aby kierować gazy prochowe nie pionowo do góry, lecz aby kierować je ukośnie (do góry-w prawo). Czemu zastosowano takie rozwiązanie? Otóż podczas strzelania z prawego ramienia, przy broni w układzie klasycznym, po oddaniu strzału, zazwyczaj następuje ruch końca lufy do góry (podrzut) przy jednoczesnym ruchy końca lufy w prawo. Tak więc osłabiacz podrzutu karabinka AKM ma za zadanie minimalizować nie tylko ruch końca lufy w płaszczyźnie pionowej, lecz również ruch końca lufy w płaszczyźnie poziomej. Oczywiście, można argumentować że tak umocowany osłabiacz podrzutu, podczas strzelania z lewego ramienia, będzie wzmacniał ruch końca lufy w płaszczyźnie poziomej, następujący po oddaniu strzału, bowiem podczas strzelania z lewego ramienia, po oddaniu strzału, zazwyczaj następuje ruch końca lufy w lewo. Jednak karabinek AKM powstał pod koniec lat 50., a wtedy podczas projektowania broni nie przejmowano się zbytnio strzelcami prowadzącymi ogień z lewego ramienia (czyli strzelcami leworęcznymi).

 

Oslabiacz_PPSz_z

Na powyższym rysunku widnieje osłabiacz podrzutu zbliżony do tego zastosowanego w pistolecie maszynowym PPSz-41 (Pepesza). Niebieska strzałka przedstawia gazy prochowe kierowane do góry przez osłabiacz. Uważam że jest to dość ciekawy model osłabiacza podrzutu, bowiem nie ma on formy urządzenia mocowanego na końcu lufy, lecz ma on formę odpowiednio ukształtowanej perforowanej osłony lufy. Otóż wokół lufy Pepeszy znajduje się  perforowana osłona, bądź ujmując to inaczej, osłona z otworami. Ów otwory zastosowano aby zminimalizować negatywny wpływ osłony na chłodzenie lufy. Jednocześnie końcowa część perforowanej osłony lufy (ta część osłony która znajduje się w pobliżu wylotu lufy) opracowana została tak, aby pełnić rolę osłabiacza podrzutu. Jak udało się doprowadzić do sytuacji w której końcowa część osłony lufy pełni rolę osłabiacza podrzutu? Po pierwsze, ta ścianka osłony lufy, która znajduje się przed wylotem lufy, umieszczona jest nie pionowo, lecz ukośnie, aby kierować gazy prochowe do góry. Po drugie, ta część osłony lufy, która znajduje się przed wylotem lufy, ma otwór umieszczony na swojej górnej powierzchni, lecz nie ma otworu umieszczonego na swojej dolnej powierzchni (perforowana osłona lufy Pepeszy ma otwory znajdujące się na dolnej powierzchni, lecz umieszczone są one jedynie za wylotem lufy). Tym samym gazy prochowe mogą wylecieć do góry przez otwór umieszczony na górnej powierzchni osłony, przed wylotem lufy (bo ten otwór jest), lecz nie mogą wylecieć do dołu przez otwór umieszczony na dolnej powierzchni osłony, przed wylotem lufy (bo tego otworu nie ma).

 

Tutaj warto zauważyć że oprócz urządzeń wylotowych pełniących jedynie rolę osłabiacza podrzutu, istnieją również wielofunkcyjne urządzenie wylotowe, pełniące między innymi rolę osłabiacza podrzutu. Przykładowo, na końcu lufy radzieckiego karabinka automatycznego AK-74, znajduje się urządzenie wylotowe, pełniące zarówno rolę hamulca wylotowego, jak i osłabiacza podrzutu.

Inny przykład wielofunkcyjnego urządzenia wylotowego to tłumik płomieni zamocowany na końcu lufy amerykańskiego karabinka automatycznego M16A2. Jest to szczelinowy tłumik płomieni ze szczelinami umieszczonymi na lewej, prawej i górnej powierzchni urządzenia, lecz jednocześnie pozbawiony szczelin znajdujących się na dolnej powierzchni. Tym samym po oddaniu strzału ów urządzenie wylotowe kieruje gazy prochowe na boki i do góry, lecz nie kieruje ich w dół. Rozwiązanie takie powoduje że tłumik płomieni zastosowany w M16A2 pełni jednocześnie rolę osłabiacza podrzutu. Lecz M16 (w tym M16A2) to broń o układzie liniowym, czyli taka gdzie punkt podparcia kolby znajduje się na jednej linii z lufą. Już samo zastosowanie układu liniowego skutecznie redukuje podrzut. Brak szczelin umieszczonych na dolnej powierzchni tłumika to jednak nie tylko redukcja podrzutu- brak gazów prochowych kierowanych w dół po oddaniu strzału oznacza mniej pyłu i kurzy wzbijanego z podłoża przez gazy prochowe (szczególnie jeśli idzie o prowadzenie ognia z postawy leżąc). Mniej pyłu i kurzu wzbijanego przez gazy prochowe ułatwia prowadzenie celnego ognia oraz utrudnia wykrycie strzelca.

 

Specyficzną formą kompensatora podrzutu jest porting lufy. Dzięki portingowi lufy, po oddaniu strzału, część gazów prochowych kierowana jest do góry, przy czym za takie skierowanie gazów prochowych odpowiada nie urządzenie wylotowe, lecz otwory umieszczone na górnej powierzchni lufy.

 

Na zakończenie, uważam że osłabiacze podrzutu największą popularność zyskały w samoczynnej broni strzeleckiej. Nie powinno to zresztą dziwić, bowiem podrzut ma negatywny wpływ na celność przede wszystkim podczas strzelania seriami. Osłabiacze podrzutu spotykane są również w przypadku samopowtarzalnej broni strzeleckiej, bowiem podrzut utrudnia szybkie strzelanie ogniem pojedynczym. Mam jednocześnie wrażenie że osłabiacze podrzutu nie są zbyt popularne w powtarzalnej i jednostrzałowej broni strzeleckiej. Uważam również że osłabiacze podrzutu nie zyskały istotnej popularności w broni artyleryjskiej.

Reklamy
Osłabiacze podrzutu

Hamulce wylotowe

Dziś wpis o hamulcach wylotowych. Czym jest urządzenie zwane hamulcem wylotowym? Otóż jest to zamontowane na końcu lufy urządzenie wylotowe, mające za zadanie zmniejszyć odrzut broni, poprzez wykorzystanie powstałych podczas strzału gazów prochowych. Hamulce wylotowe stosowane są zarówno w przypadku broni strzeleckiej, jak i w broni artyleryjskiej. Hamulce wylotowe dzielą się na akcyjne (zwane też aktywnymi), reakcyjne (reaktywne) i akcyjno-reakcyjne (aktywno-reaktywne). Poniżej opisuję poszczególne typu hamulców wylotowych:

 

 

hamulec_aktywny_z

Akcyjny (aktywny) hamulec wylotowy.

W przypadku akcyjnego hamulca wylotowego, część gazów prochowych uderza w ścianki hamulca ustawione prostopadle do lufy. Gdyby odrzut broni nie istniał, uderzenie gazów prochowych w ścianki hamulca ustawione prostopadle do lufy, powodowało by ruch broni do przodu. Ale odrzut broni istnieje, tym samym wspomniane uderzenie jedynie zmniejsza odrzut. Na powyższym rysunku czerwonymi strzałkami zaznaczono gazy prochowe uderzające w ścianki hamulca prostopadłe do lufy (ów ścianki również zaznaczono kolorem czerwonym).

 

 

hamulec_reaktywny_z

Reakcyjny (reaktywny) hamulec wylotowy.

W przypadku reakcyjnego hamulca wylotowego, część gazów prochowych zostaje skierowanych przez hamulec do tyłu. Przy braku odrzutu, ruch gazów do tyłu, powodował by ruch broni do przodu. Jednak odrzut istnieje, tym samym skierowanie części gazów prochowych do tyłu jedynie zmniejsza odrzut. Na powyższym rysunku niebieskimi strzałkami zaznaczono gazy prochowe skierowane do tyłu przez reakcyjny hamulec wylotowy.

 

 

hamulec_aktywno_reaktywny_z

Akcyjno-reakcyjny (aktywno-reaktywny) hamulec wylotowy.

Akcyjno-reakcyjny hamulec wylotowy to skrzyżowanie hamulca akcyjnego z reakcyjnym. W przypadku akcyjno-reakcyjnego hamulca wylotowego, za zmniejszenie odrzutu częściowo odpowiada uderzenie gazów prochowych w ścianki hamulca prostopadłe do lufy, a częściowo skierowanie gazów prochowych do tyłu. Na powyższym rysunku czerwone strzałki to gazy prochowe uderzające w ścianki hamulca ustawione prostopadle do lufy (również zaznaczone kolorem czerwonym). Strzałki niebieskie to gazy prochowe skierowane do tyłu.

 

Zgodnie z pracą Teoria strzału (Wydawnictwo MON, rok wydania: 1970) hamulce wylotowe pochłaniają około 30-40% energii odrzutu. Natomiast zgodnie z książką Broń i amunicja strzelecka LWP (autor: Stanisław Torecki, Wydawnictwo MON, rok wydania: 1985) istniejące hamulce wylotowe mogą zmniejszać energię odrzutu swobodnego nawet o 60%. Hamulce wylotowe mają jednak pewne wady. Zgodnie z Teorią strzału wady hamulców wylotowych to:

-demaskowanie broni;

-kierowanie strumienia gazów na strzelającego;

-powodowanie wznoszenia pyłu przez gazy prochowe utrudniającego prowadzenie celnego ognia.

Przy czym ów pył wznoszony przez gazy prochowe to po prostu pył porywany z podłoża podczas strzału w wyniku działania gazów prochowych.

Dodatkowo, zgodnie z książką Broń i amunicja strzelecka LWP, wadą hamulców wylotowych są ich duże wymiary.

 

Hamulce wylotowe